
The Language of Music: A Computational

Model of Music Interpretation

Andrew McLeod
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute for Language, Cognition and Computation

School of Informatics

University of Edinburgh

2018

Abstract
Automatic music transcription (AMT) is commonly defined as the process of convert-

ing an acoustic musical signal into some form of musical notation, and can be split

into two separate phases: (1) multi-pitch detection, the conversion of an audio signal

into a time-frequency representation similar to a MIDI file; and (2) converting from

this time-frequency representation into a musical score. A substantial amount of AMT

research in recent years has concentrated on multi-pitch detection, and yet, in the case

of the transcription of polyphonic music, there has been little progress.

There are many potential reasons for this slow progress, but this thesis concentrates

on the (lack of) use of music language models during the transcription process. In par-

ticular, a music language model would impart to a transcription system the background

knowledge of music theory upon which a human transcriber relies. In the related field

of automatic speech recognition, it has been shown that the use of a language model

drawn from the field of natural language processing (NLP) is an essential component

of a system for transcribing spoken word into text, and there is no reason to believe

that music should be any different.

This thesis will show that a music language model inspired by NLP techniques can

be used successfully for transcription. In fact, this thesis will create the blueprint for

such a music language model. We begin with a brief overview of existing multi-pitch

detection systems, in particular noting four key properties which any music language

model should have to be useful for integration into a joint system for AMT: it should

(1) be probabilistic, (2) not use any data a priori, (3) be able to run on live performance

data, and (4) be incremental.

We then investigate voice separation, creating a model which achieves state-of-the-

art performance on the task, and show that, used as a simple music language model, it

improves multi-pitch detection performance significantly. This is followed by an inves-

tigation of metrical detection and alignment, where we introduce a grammar crafted for

the task which, combined with a beat-tracking model, achieves state-of-the-art results

on metrical alignment. This system’s success adds more evidence to the long-existing

hypothesis that music and language consist of extremely similar structures.

We end by investigating the joint analysis of music, in particular showing that a

combination of our two models running jointly outperforms each running indepen-

dently. We also introduce a new joint, automatic, quantitative metric for the complete

transcription of an audio recording into an annotated musical score, something which

the field currently lacks.

iii

Lay Summary

Automatic music transcription (AMT) is commonly defined as the process of con-

verting an musical recording into some form of musical notation, and can be split into

two phases: (1) the detection of the musical notes present in the recording; and (2)

converting from these notes into a musical score. A substantial amount of research in

AMT in recent years has concentrated on the first phase, and yet, in the case of musical

recordings which contain multiple simultaneous notes, there has been little progress.

There are many potential reasons for this slow progress, but this thesis concentrates

on the (lack of) use of musical knowledge during the transcription process. A human

performing the task would rely on a background knowledge of music theory, but most

AMT systems do not have a way to use such knowledge. In the related area of the

transcription of the spoken word into text, it has been shown that the use of knowledge

about the structure and meaning of natural language (in the form of a language model)

is an essential component of a successful system, and there is no reason to believe that

music should be any different.

This thesis will show that musical knowledge can be imparted to music transcrip-

tion systems with ideas inspired by natural language research through the use of a mu-

sic language model. In fact, this thesis will create the blueprint for how such a music

language model should be structured. We begin with a brief overview of existing mu-

sic transcription systems, noting four key properties which any music language model

should have should have to be useful for integration into a complete AMT system.

We then investigate the creation of music language models covering multiple as-

pects of music. First, we look at models which can separate a list of notes into their

individual parts (for example, by which instrument made each note), and we learn that

the use of such a model improves the performance of transcription of an audio record-

ing significantly. Next, we investigate the modelling of rhythmic aspects of music, and

learn that musical rhythms have a very similar structure to natural language by showing

that a type of language model known as a grammar can detect the underlying structure

of a musical performance.

Finally, we end by combining our two models, showing that their combination,

run together, outperforms each running separately. We also introduce a new metric to

judge the performance of any model performing a complete transcription of a musical

recording into a musical score, something that is severely lacking in the field.

v

Acknowledgements
There are countless people, far too many to name them all, without whom this thesis

wouldn’t be what it is today. First and foremost, my supervisor, Mark Steedman. It

has been a great pleasure to work with Mark over the years, and I have learned a great

deal from our frequent conversations about music, both related and unrelated to this

thesis. The perspective I have gained from Mark during my time at Edinburgh has been

invaluable.

I would like to thank my viva examiners David Temperley and Chris Lucas for

their feedback regarding my initial submitted version of this thesis. I am sure that the

changes derived from our discussion have made this a more complete work.

I would like to thank Rodrigo Schramm and Emmanouil Benetos for their collab-

oration on the acoustic voice assignment model in Chapter 3. In particular, Rodrigo

and I spent a great deal of time together working on the code to integrate our models,

and I owe both of them thanks for inviting me on my numerous visits to Queen Mary

University of London to aid in the collaboration.

Emmanouil deserves additional thanks for his feedback regarding an early version

of the new evaluation metric in Chapter 5, as well as his time and expertise in dis-

cussing my future plans, including his work on our joint grant proposal.

I would like to thank Nathan Schneider, whose advice and feedback at the begin-

ning of my PhD, both about my research, and about music and academia in general

have been invaluable to this process. Our weekly lunch conversations at Nawroz led

directly to me organising a workshop at Edinburgh at which my collaboration with

Rodrigo and Emmanouil first began to take shape.

I would like to thank James Owers for our weekly golf “meetings” which have kept

me sane over these past few months, as well as his discussions with me on music and

research in general, and his feedback on earlier, much worse drafts of this thesis.

I would like to thank my friends, both in Edinburgh and around the world. A PhD is

a long process, and their support and conversations have seen me through this chapter

of my life with a smile on my face.

I would like to thank Steve Nowicki, who was truly the inspiration for me to start

on this path towards academia. I still vividly remember our conversation at Chocolat

where I finally took seriously his suggestion to consider it as a real option.

Last, but certainly not least, I would like to thank my parents and my sister for

their unconditional love and support over these past 27 years. I certainly could not

have done any of this without each one of you.

vii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Andrew McLeod)

viii

“The written word seems deceptively free from the ebb and flow of feeling and

emotion, but the spoken word defies separation from the flow of consciousness of the

speaker. Perhaps, then, the problem has been wrongly posed. We should be asking

not, how is it that music can have meaning when there are no words to convey it, but,

how can the written word convey meaning when there is no indication how it should

be uttered? The wonder should be, not that we can communicate through song, dance

and gesture, but that we can exchange experiences so effectively through such a

dry-as-dust-medium as patterns of marks on processed wood pulp.”

—The Language of Music (Longuet-Higgins, 1972)

ix

Table of Contents

1 Introduction 1
1.1 Data Formats . 4

1.2 Thesis Overview . 5

2 Multi-pitch Detection 7
2.1 Introduction . 7

2.2 Spectrogram Factorisation . 8

2.3 Deep Learning . 11

2.4 Other Methods . 12

2.5 Note Tracking . 13

2.6 Conclusion . 14

3 Voice Separation 17
3.1 Introduction . 18

3.2 From Live Performance MIDI . 19

3.2.1 Related Work . 20

3.2.2 Proposed Solution . 23

3.2.3 Evaluation . 30

3.2.4 Conclusion . 41

3.3 From Audio . 42

3.3.1 Related Work . 43

3.3.2 Proposed Method . 44

3.3.3 Evaluation . 57

3.3.4 Conclusion . 65

3.4 Conclusion . 68

4 Metrical Analysis 71
4.1 Introduction . 72

xi

4.2 Existing Work . 73

4.3 Tatum-aligned Data . 74

4.3.1 Proposed Method . 75

4.3.2 Evaluation . 82

4.4 With Beat Tracking . 87

4.4.1 Proposed Model . 87

4.4.2 Evaluation . 95

4.5 Conclusion . 104

5 Joint Analysis 107
5.1 Introduction . 107

5.2 Joint Model . 108

5.2.1 Results . 109

5.3 Joint Evaluation . 113

5.3.1 Existing Metrics . 114

5.3.2 New Metric . 118

5.3.3 Examples . 123

5.4 Conclusion . 126

6 Conclusion 129

References 133

xii

Chapter 1

Introduction

The most common definition of automatic music transcription (AMT) is quite vague,

referring to the ability to take as input an audio signal and output “some form of music

notation” (Benetos, Dixon, Giannoulis, Kirchhoff, & Klapuri, 2013). We define the

“complete” AMT problem more specifically to refer to the conversion of an audio

signal into a complete musical score.

Conceptually, it can be useful to split the complete transcription process into two

separate phases: (1) multiple fundamental frequency detection (multi-pitch detection),

the conversion of an audio signal into a time-frequency representation, often going

as far as detecting note-events and assigning each note a pitch, onset time, and offset

time, as in a MIDI file; and (2) converting from this time-frequency representation

into a musical score by performing musical analysis such as voice separation, metrical

analysis, and harmonic analysis. These two steps of the complete AMT pipeline are

illustrated in Figure 1.1.

A wealth of research has been performed on the first phase, multi-pitch detection.

In fact, for monophonic signals—those containing only one note at a time—the prob-

lem is considered solved. However, the accuracy of even state-of-the-art multi-pitch

detection models on polyphonic signals is still clearly below that of a human expert per-

forming the same task (Benetos et al., 2013). Also concerning is the fact that there have

been only minimal frame-based accuracy improvements in the corresponding annual

shared task: the Music Information Retrieval Evaluation Exchange (MIREX) Multiple

Fundamental Frequency Estimation & Tracking Task (MIREX, 2017e), as shown in

Figure 1.2. In fact, between 2010 and 2017 (the most recent year for which results are

currently available), the highest accuracy was 0.72 by Elowsson and Friberg (2014)

and by Thickstun, Harchaoui, and Kakade (2017), narrowly beating out the 0.69 accu-

1

2 Chapter 1. Introduction

=⇒ =⇒

Figure 1.1: The two steps of the complete AMT pipeline. First, multi-pitch detection is

performed to convert an input audio recording (left) into some time-frequency represen-

tation (here, MIDI data, middle). Next, further musical analysis is performed to convert

the MIDI data into a musical score (right).

racy by Yeh (2008) in 2010. Note that the dataset has remained unchanged throughout

this period

One possible reason for this lack of progress is that the multi-pitch detection models

have not tended to use the background knowledge of music theory upon which a human

transcriber relies. In the field of automatic speech recognition, it has been shown

that a background language model drawn from natural language processing (NLP) is

essential to the transcription of audio into text (Young, 1996), and there is no reason to

think that music should be any different. In fact, music and language are much more

similar than might seem at first glance.

Meyer (1956), for example, describes emotion and meaning in music, comparing it

to emotion and meaning of other forms of communication. Bernstein (1976) takes this

comparison further, hypothesising numerous parallels and analogies between music

and different aspects of language, from phonemes, to words, to sentences and beyond.

Lerdahl and Jackendoff (1985) formalise this comparison, proposing a grammar for

the hierarchical analysis of music based on grammars created for the analysis of nat-

ural language used in linguistics and NLP. More recently, a variety of work has used

NLP-based grammars to parse harmonic progressions in a variety of Western music,

demonstrating that the harmonic progressions of Western tonal music have a syntac-

tic structure similar to that of natural language (Steedman, 1996; Rohrmeier, 2011;

Granroth-Wilding & Steedman, 2014).

Some AMT systems have begun to incorporate limited musicological information

in the form of a simple music language model which runs either jointly with the acous-

3

2010 2011 2012 2013 2014 2015 2016 2017

0.5

0.6

0.7

0.8

0.9

1

Year

Fr
am

e-
ba

se
d

A
cc

ur
ac

y

MIREX Multi-F0 Estimation Results

Figure 1.2: The frame-based accuracy of the top-scoring model in the MIREX Multi-F0

Estimation task for each year since 2010 on the MIREX dataset (which has remained

unchanged).

tic multi-pitch detection model, or as a post-processing step. Berg-Kirkpatrick, An-

dreas, and Klein (2014), for example, use a form of simple music language modelling

where each note is assigned its own music language model to guide its pitch activa-

tions. Sigtia, Benetos, and Dixon (2016) use a recurrent neural network (RNN) music

language model along with a convolutional neural network (CNN) acoustic model for

the transcription of piano recordings. These models have indeed shown some im-

provement over previous AMT systems (although their results cannot be compared to

the MIREX results since they are both evaluated specifically on piano music). Even so,

it is clear that the music language models seem to be limited to learning the low-level

structure of music at the note level or lower—analogous to phoneme-level modelling

in speech recognition—rather than any more insightful music analysis. A complete

music language model has yet to be offered.

This thesis demonstrates that a music language model, inspired by NLP techniques,

can be used successfully for higher-level music language modelling. In doing so, it

adds further evidence in support of the hypothesised similarities between music and

natural language. It also proves that the addition of such a language model can sig-

nificantly improve the accuracy of acoustic models for multi-pitch detection, and that

modelling different aspects of music jointly adds value over independent modelling.

To that end, it outlines desirable properties that a music language model should have

4 Chapter 1. Introduction

for it to be useful in a joint model for improving AMT performance, and it proposes a

new evaluation metric for the task of complete AMT.

It is important to note that although the models presented in this thesis are often

inspired by human cognition (since humans outperform computers on many transcrip-

tion tasks), they should not be seen as models of human cognition. They do indeed

both run on the same input information as a human would receive (a non-annotated

stream of notes or audio) and perform their analyses incrementally as a human would.

However, we do not argue that humans necessarily interpret or analyse music in a sim-

ilar fashion to our models, nor do we evaluate our models with human cognition in

mind. Rather, the focus of this thesis is on the improvement AMT performance, and

the models are evaluated in such a context.

1.1 Data Formats

This thesis will use data in a variety of formats, including audio recordings as well as

more data formats. This section gives an overview of each.

Audio recordings are the most natural format for storing music performance, con-

sisting of a digital representation of a waveform. There are many different audio file

types; however, regardless of the specific file type or compression strategy used, each

essentially contains the same information: the value of the recorded waveform at some

time interval.

The main input to the models presented in this thesis, however, is not audio data. It

is instead MIDI data, which contains a more abstract representation of music. We use

the term MIDI data to refer to any data format which contains a list of musical notes,

where each is assigned a pitch (in equally-tempered semitone scale), an onset time, and

an offset time, such as a piano roll. In practice, many different formats are equivalent

to MIDI in this regard. Additional information such as voicing, metrical structure,

and key signature are also sometimes included in MIDI data, though we ignore them

for the purposes of our analyses. This gives the added benefit of allowing the models

presented in this thesis to be run directly on the wealth of non-annotated MIDI data

which is available online.

There are two types of MIDI data: (1) metronomic and (2) live performance. In

metronomic data, the notes are a perfectly metronomic representation of the notes of

a musical score, though the meter, tempo, and key signature are not always annotated.

Such data is a representation of a musical piece rather than any specific performance

1.2. Thesis Overview 5

of that piece, and is usually computer generated. Live performance data, on the other

hand, does indeed represent a specific performance of a piece, and is either generated

by hand from audio data, or recorded directly from an instrument capable of producing

it, such as a MIDI keyboard.

Note that although MIDI is a widely used format, it has its limitations. While it

has the ability to represent performance techniques like vibrato or portamenti (slides)

as control change (CC) messages, these are only used in practice when the MIDI file is

recorded directly from a MIDI instrument. For other MIDI files, such CC messages are

rarely present, although they are often annotated in musical scores. Thus, for a com-

plete AMT system, further processing must be performed in addition to any analyses

which can be learned from MIDI files directly (such as those presented in this thesis).

1.2 Thesis Overview

Chapter 2 presents a brief overview of existing multi-pitch detection models which

take an audio recording as input and produce some MIDI-like format as output. While

multi-pitch detection itself is not the explicit subject of any section of this thesis (and

thus, such an overview would not fit directly into one of the other chapters), a strong

knowledge of the current state of the field as a whole gives important context to the

remaining chapters. In particular, Chapter 2 will enumerate four key properties which

models created for the purpose of improving AMT (such as those created in this thesis)

should have.

Chapter 3 describes work on voice separation and assignment, the process of taking

a polyphonic list of notes and separating them into monophonic streams. Voice sep-

aration is often performed simply as a preprocessing step for further music analysis;

however, we will show that a good model for voice separation, used as a simple mu-

sic language model, can be integrated with an acoustic model to significantly improve

multi-pitch detection as well as voice assignment from acoustic input. Thus, we will

show that voice separation should in future play an important role in music language

modelling.

Chapter 4 contains work on the metrical analysis of music, in particular the detec-

tion and alignment of the underlying metrical structure of an input stream of notes. We

will show that the use of a lexicalised probabilistic context-free grammar (LPCFG), a

type of tree grammar also used in NLP, is able to capture the complex dependencies

of musical rhythms and detect this underlying metrical structure. That such grammars

6 Chapter 1. Introduction

have also been used for NLP tasks suggests that the structures of music and language

are in some way similar. Thus, we will show that the use of NLP techniques for music

language modelling is a promising approach worthy of future research.

Chapter 5 discusses the joint modelling of multiple aspects of music, where we

will show that such an approach offers improved results compared with independently

modelling each component. Thus, we will demonstrate that even seemingly unrelated

components of musical analysis have the potential to inform and improve each other,

suggesting that music language models should be designed to make joint analysis pos-

sible. Towards the goal of joint music language modelling for AMT, we will also

suggest a new metric for the complete transcription and analysis of musical audio—

something which is lacking in a field that will likely be the subject of much research

in the years to come.

Finally, general conclusions and ideas for future work are presented in Chapter 6.

Chapter 2

Multi-pitch Detection

This chapter contains an overview of existing work on multi-pitch detection. The main

goal of this thesis, to create a music language model for the purpose of improving

acoustic transcription, does not directly involve multi-pitch detection per se. However,

a future plan is to integrate our full music language model with a multi-pitch detection

system such as any of those described here. Thus, while multi-pitch detection itself is

not the explicit subject of this thesis, a strong knowledge of state-of-the-art approaches

in the field helps to give context to the remaining chapters, in particular to highlight

what properties and constraints our music language model (as well as the multi-pitch

detection model) must have in order for such integration to be possible.

Furthermore, in Chapter 3, we present a joint system for multi-pitch detection and

voice assignment, combining an acoustic multi-pitch detection model based on prob-

abilistic latent component analysis (PLCA; see Section 2.2) with a voice separation

music language model, and a knowledge of existing multi-pitch detection models will

also be valuable as background to that work.

2.1 Introduction

A large majority of methods for multi-pitch detection in recent years have been based

on some form of spectrogram analysis. A spectrogram is a time-frequency representa-

tion of an audio signal where a single waveform is converted into a matrix whose value

in each cell represents the strength of a single frequency (corresponding to the row) at

a specific time (corresponding to the column). The time (horizontal) axis is usually on

a linear scale, with each column representing an equal-length duration called a frame,

while the frequency (vertical) axis is usually either linear or logarithmic, with each

7

8 Chapter 2. Multi-pitch Detection

Figure 2.1: The spectrogram of a 3-second audio clip.

row representing a particular frequency range. The most basic method to calculate a

spectrogram from a waveform is the Fourier Transform, resulting in a linear frequency

scale. Convolutional neural networks (CNNs) were also used by Bittner, McFee, Sala-

mon, Li, and Bello (2017) for learning a pitch salience representation—essentially a

spectrogram where noise content is reduced and harmonic pitches are emphasised—for

multi-pitch detections in polyphonic audio recordings. Figure 2.1 shows an example

spectrogram.

This chapter presents an overview of methods for multi-pitch detection organised

by their basic approach. Spectrogram factorisation methods are described in Section

2.2, deep learning approaches are described in Section 2.3, and other methods are

discussed in Section 2.4. Note tracking, the process of converting frame-based multi-

pitch detections into a sequence of musical notes, a necessary step for any complete

AMT system, is discussed in Section 2.5. A conclusion, which puts the described

methods into the larger context of this thesis, highlighting desirable features for our

music language model as well as for a multi-pitch detection model, is presented in

Section 2.6.

2.2 Spectrogram Factorisation

Spectrogram factorisation involves decomposing an input time-frequency representa-

tion (such as a spectrogram) into a linear combination of factors. Such methods have

2.2. Spectrogram Factorisation 9

been used extensively for multi-pitch detection in the last decade, the most successful

of which have been based on non-negative matrix factorisation (NMF; D. D. Lee &

Seung, 1999) or probabilistic latent component analysis (PLCA; Shashanka, Raj, &

Smaragdis, 2008).

NMF is based on the assumption that an object is well-represented as a combination

of parts. For example, a single spectrogram consisting of many notes could be seen as

a combination of the spectrograms of those notes individually. Thus, NMF attempts to

decompose a spectrogram V (represented as a matrix) into the product of two matrices

W and H, which are both constrained to be non-negative. This non-negativity con-

straint guides the decomposition towards the desired parts-based representation. Each

column of W is a basis vector, and each row of H represents the contribution of the

corresponding basis vector to the spectrogram across time. For a successful decompo-

sition, each basis vector in W would ideally represent a single note; thus, the rows of

H would correspond to the presence of that pitch across time in the input spectrogram.

The factorisation is performed by minimising a cost function between V and WH,

most often a simple Euclidean distance, shown in Equation (2.1), and minimisation is

performed iteratively until convergence.

||V −WH||2 = ∑
i j
(Vi j− (WH)i j)

2 (2.1)

PLCA is the probabilistic equivalent of NMF, where Kullback-Leibler (KL) diver-

gence (also known as relative entropy), shown in Equation (2.2), is instead used as the

cost function. For this to be valid, the spectrogram V is treated as a bivariate proba-

bility distribution P(t,ω) over time t and frequency ω, and thus must be normalised

to sum to 1.1 The factorisation is then reformulated as a product of conditionally in-

dependent probability distributions as shown in Equation (2.3) in its most basic form,

where P(t) is the probability of any pitch occurring at a given time (the spectral energy

of the spectrogram at a given time), P(ω|p) is the dictionary containing the spectrum of

every possible pitch (equivalent to W in NMF), and P(p|t) is the probability of a pitch

being present at a given time (equivalent to H in NMF). The expectation-maximisation

(EM) algorithm (Dempster, Laird, & Rubin, 1977) is then used iteratively to minimise

the KL divergence between this product and the true spectrogram until the model con-

verges.

1Intuitively, the spectrogram can be interpreted as the distribution of the spectral energy of an audio
signal across a range of frequencies and times.

10 Chapter 2. Multi-pitch Detection

D(V ||WH) = ∑
i j
(Vi jlog

Vi j

(WH)i j
−Vi j +(WH)i j) (2.2)

P(ω, t) = P(t)∑
p

P(ω|p)P(p|t) (2.3)

While these spectrogram factorisation methods have shown promise for multi-pitch

detection in their most basic form, their parameter estimation can suffer from local

optima, a problem which has motivated a variety of approaches that incorporate addi-

tional knowledge in an attempt to achieve more meaningful decompositions. Kameoka

et al. (2012) exploit structural regularities in the spectrograms during the NMF process,

adding constraints and regularisation to reduce the degrees of freedom of their model.

These constraints are based on time-varying basis spectra (e.g., using sound states: “at-

tack”, “decay”, “sustain”, and “release”), and have since been included in other prob-

abilistic models (Benetos & Dixon, 2013; Benetos & Weyde, 2015). Fuentes, Badeau,

and Richard (2014) introducfe the concept of brakes, slowing the convergence rate of

any model parameter known to be properly initialised.

For the factorisation, the basis vectors can either be pre-trained in a supervised

manner, resulting in better performance (assuming the training data contains similar

instruments and recording environments to the test data), or they can be learned adap-

tively from the input spectrogram, resulting in lower accuracy but better generalisa-

tion across different instruments and recording environments. Mysore and Smaragdis

(2009), Grindlay and Ellis (2011), and Benetos and Weyde (2015), for example, all

learn a dictionary of the spectral atoms of specific instruments during training. Vincent,

Bertin, and Badeau (2010), on the other hand, use an adaptive spectral decomposition

process, relying on the harmonicity of musical sounds to model pitches as combina-

tions of narrowband spectra which preserve a smooth spectral envelope for the partials

of a pitch.

Using the Constant-Q transform (CQT; J. Brown, 1991) to calculate the spec-

trogram results in a log-scaled frequency axis. To take advantage of this, some ap-

proaches develop techniques using shift-invariant models over log-frequency (Mysore

& Smaragdis, 2009; Fuentes, Badeau, & Richard, 2012; Benetos & Dixon, 2012, 2013;

Benetos, Badeau, Weyde, & Richard, 2014), allowing for the creation of a compact set

of dictionary templates that can support tuning deviations and frequency modulations.

O’Hanlon, Nagano, Keriven, and Plumbley (2016) propose stepwise and gradient-

based methods for non-negative group sparse decompositions, exploring the use of

2.3. Deep Learning 11

subspace modelling of note spectra. This group sparse NMF approach is used to tune a

generic harmonic subspace dictionary, improving automatic music transcription results

based on NMF.

2.3 Deep Learning

Recent research on multi-pitch detection has also focused on deep learning approaches.

For example, Böck and Schedl (2012) use a bidirectional long short-term memory

(BLSTM) recurrent neural network (RNN) for the task of pitch and onset detection

from audio, showing good performance and generalisation. Boulanger-Lewandowski,

Bengio, and Vincent (2013) also use an RNN for multi-pitch detection, this time pre-

ferring a frame-based output without explicitly modelling onsets.

Sigtia et al. (2016) compare the use of feed-forward, recurrent, and convolutional

neural networks (CNNs) for multi-pitch detection of piano music, in an end-to-end sys-

tem consisting of both an acoustic model and a (frame-based) music language model,

run on a CQT spectrogram. Their best performing model consists of a CNN acoustic

model with a frame-based RNN music language model. The results with the RNN are

only marginally better than those using simple thresholding or a hidden Markov model

(HMM) music language model, suggesting that a more sophisticated, note-based music

language model might be required to see larger improvements in performance. In fact,

this frame-based RNN is essentially a sophisticated note tracking model (see Section

2.5 for an overview of note tracking methods).

Kelz et al. (2016) also compare neural network architectures (feed-forward and

convolutional, as well as a combination of both) and input representations for multi-

pitch detection. Their best performing model is run on a spectrogram with log-scale

frequency as well as log-scale strength, and consists of a network with three convo-

lutional layers followed by two feed-forward layers. They show that this input and

network combination achieves state of the art results on the frame-based transcription

of piano music.

The top performing model from the 2017 MIREX Multi-F0 Estimation task, by

Thickstun, Harchaoui, Foster, and Kakade (2017), based on a model previously de-

scribed by Thickstun, Harchaoui, and Kakade (2017), applies a CNN to a filterbank of

512 log-spaced frequencies for the task. The first layer of the network convolves along

log-frequency, while the second layer is fully connected across time for each audio

frame length of 1/3 of a second. Finally, a linear classifier is used for each pitch to

12 Chapter 2. Multi-pitch Detection

determine if it is present.

2.4 Other Methods

Klapuri (2005) proposes a perceptually motivated model in which single pitches are

detected and then removed from the original signal iteratively. Ryynanen and Klapuri

(2005) extend that model with a music language model. They use two HMMs for each

possible pitch: a note HMM, which contains an attack state, a sustain state, and a noise

state; and a silence HMM, which contains only a single state representing a rest. The

observed data for the HMMs are features calculated from a perceptually motivated

acoustic model. The two HMMs of a single pitch may not both be active at the same

time, and transitions between HMMs (including across pitches) are calculated by a

music language model. The music language model first calculates the key of the piece,

and then applies a simple bi-gram model to monophonic sequences of notes. The

process is iterative: the most likely monophonic note sequence is transcribed during

each iteration until the resulting monophonic sequence is only silence.

Klapuri (2006) calculates the salience of a candidate pitch detection as a weighted

sum of the amplitudes of its harmonic partials. The method performs spectral whiten-

ing as preprocessing, a process which makes the method more robust to the varying

timbral properties of sounds produced by different instruments.

Yeh (2008), the best scoring method from the MIREX Multi-F0 Estimation task

from the years 2010–2013, is a generative model composed of three components: a

noise model, which models the background noise of a signal as randomly fluctuating

white noise; a source model, which detects potential harmonic pitches without explic-

itly modelling the amplitudes of the individual partials; and a source interaction model,

which models the amplitude of each individual partial. A joint estimation approach is

used to maximise the harmonicity and spectral smoothness of each candidate pitch

detection, as well as the smoothness of the evolution of each partial amplitude over

time.

Pertusa and Iñesta (2012) also use joint estimation, calculating the partial strengths

of polyphonic combinations of pitches directly, measuring each combination’s spec-

tral smoothness and strength. Smoothing is also performed across adjacent frames to

ensure temporal continuity.

Berg-Kirkpatrick et al. (2014) describe a three-component generative model for the

transcription of piano music, somewhat similar to NMF. The components are an event

2.5. Note Tracking 13

model, an activation model, and a spectrogram model for each note on a piano. The

event model, a Markov model, can be considered a simple music language model, and

generates a sequence of notes and rests, each with a duration (measured in time steps)

and a velocity (which is 0 for the rests). The activation model is similar to the H matrix

from NMF, and generates the envelope of each played note based on the duration and

velocity from the event model. The spectrogram model, analogous to the W matrix

from NMF, generates the full spectrum of each note given its envelope. The spectra

for each note are summed to generate the final spectrogram.

The best performing method from the 2014 MIREX Multi-F0 Estimation task,

Elowsson and Friberg (2014), has unfortunately remained underspecified. However,

the authors do state that they use a combination of multiple spectrograms at different

resolutions. Their model transforms these spectrograms into a higher level representa-

tion with a machine learning framework, from which onsets and pitches are detected

jointly.

2.5 Note Tracking

One additional step that is necessary after a frame-based multi-pitch detection is note

tracking. Note tracking involves the grouping of frame-based pitch detections into

notes spanning multiple frames, each with an onset, offset, and pitch. The most simple

method for this is rule-based, as in Bello, Daudet, and Sandler (2006). Here a pitch that

is present for multiple consecutive frames is initially classified as a single note. After

this, consecutive notes which are separated by a rest of shorter than some threshold are

joined together, and finally those remaining notes which are shorter than some other

threshold are removed.

Poliner and Ellis (2007) use HMMs for note tracking, one per pitch, each with two

states: on and off. These HMMs are run over the frame-based detections for each

pitch, and work to produce realistic transcriptions, reducing note onsets and offsets

(which correspond to HMM state transitions) to reasonable levels, according to some

learned transition probabilities. More recently, feature-based approaches have been

used for note tracking, classifying each potential note and rest as true or false. For

example, support vector machines (SVMs) were used by Weninger, Kirst, Schuller, and

Bungartz (2013), with NMF activation strengths used as features, and SVMs as well

as other classification models were used by Valero-Mas, Benetos, and Iñesta (2016),

using PLCA activation probabilities as well as a rule-based note tracking transcription

14 Chapter 2. Multi-pitch Detection

as features.

It should also be noted that the RNN music language model used by Sigtia et al.

(2016) (see Section 2.3) is essentially used as a sophisticated note tracking model,

since it works on the frame level.

2.6 Conclusion

Regardless of the core method used for multi-pitch detection, it is clear from model per-

formance that acoustic models which are integrated with music language models, even

seemingly unsophisticated ones, seem to outperform those with no such musicological

knowledge. This is in direct analogy to the problem of automatic speech recognition,

in which a language model is an essential component of a successful model. All of the

deep learning methods mentioned in Section 2.3 can be thought of as containing a sim-

ple music language model, in particular modelling the progression of pitch detections

across frames, and it is likely that this feature accounts for some of their good perfor-

mance. However, music language models which are designed to capture musicological

structure at the note level (such as the one described in this thesis) are also desirable.

In theory, such a note-level music language model could be used with any proba-

bilistic multi-pitch detection system directly as a post-processing step, and most of the

above methods output a probability distribution over possible pitch detections. In prac-

tice, however, a tighter integration between the acoustic model and the music language

model components which allows each to inform the other, should lead to increased

performance.

Assuming we have some acoustic multi-pitch detection model which outputs a

probability distribution over detected notes, a music language model should have the

following properties in order for such a tight integration to be possible:

• It must be probabilistic, taking as input a probability distribution over the de-

tected notes and producing as output a probability distribution over those same

notes. That is, the music language model, given a potential note, should output

the probability of that note being present. Such a probability value could be used

either in discriminatively (by evaluating every detected note) or generatively (by

evaluating every potential note at the next time-step, thereby guiding the acous-

tic model). In either case, the final probability of a note would be the product

of the acoustic model’s probability for that note and the music language model’s

probability for that note.

2.6. Conclusion 15

• It must not use any specific information about a piece of music besides what can

be generated directly by the acoustic model. In particular, this rules out the use

of any a priori information regarding the underlying music such as its alignment

with a metrical structure, its key signature, or the number of voices present.

A significant amount of prior work on music language modelling require some

amount of this information a priori. Our proposed music language model, on the

other hand, uses no such information, allowing it to be run on non-annotated data

directly, an added benefit given the large amount of such data available online.

• Similarly, it must be able to run on live performance data. Live performance may

contain timing deviations, or non-simultaneous notes which overlap slightly. A

music language must be robust to such idiosyncrasies in order for it to be run

on live performance data (or, in the future, jointly with an acoustic multi-pitch

detection model).

• Ideally, it would be incremental, working causally from the beginning to the

end of the piece. While this incrementality is not necessary, it would allow for

simpler integration with multi-pitch detection models, enabling its output to be

used as a prior for the acoustic model without necessitating that the acoustic

model run to completion first. Incrementality also allows a model to be used for

real-time tasks such as live accompaniment or improvisation.

Throughout this thesis, we propose components of a music language model to be

used for transcription; importantly, our components all match the four criteria enu-

merated here. We will not apply our full model directly to audio files, but in Chapter

3, we introduce an integrated system using only a voice separation model as its mu-

sic language model. That system’s success strongly suggests that our eventual goal

of creating a joint system consisting of an acoustic model with a fully-fledged music

language model is both attainable and has the potential for success.

Chapter 3

Voice Separation

This chapter discusses voice separation, the division of the notes of a musical perfor-

mance into streams called voices, and voice assignment, which additionally assigns a

label to each voice representing the instrument or part to which those notes belong.

Voice separation should be an integral component of any music language model, en-

abling the other components of the model to perform computation on multiple sim-

ple monophonic streams of notes, rather than a complicated polyphonic stream. This

is analogous to a speech transcription system analysing multiple different recordings

with one speaker each, rather than a single recording with multiple speakers speaking

simultaneously. Additionally, voice separation and assignment are necessary compo-

nents of any transcription system which is to be run on recordings containing multiple

instruments, since each instrument is meant to be placed on an individual staff in the

sheet music.

We design an HMM for the voice separation of live performance MIDI data which

follows all of our constraints for a music language model from Chapter 2, being prob-

abilistic, incremental, using no a priori information, and being able to run on live

performance data. In fact, to our knowledge, our voice separation model is the first

to have all four of these properties. Section 3.2 presents that HMM, and Section 3.3

combines an acoustic multi-pitch detection model with a modified version of it for the

voice assignment of audio recordings of a cappella music, showing in practice that

our model works alongside a multi-pitch detection system, and that voice separation is

indeed a valuable component of a music language model.

This chapter is based on the published works “HMM-based voice separation of

MIDI performance” (McLeod & Steedman, 2016), “Multi-pitch detection and voice

assignment for a cappella recordings of multiple singers” (Schramm, McLeod, Steed-

17

18 Chapter 3. Voice Separation

man, & Benetos, 2017), and “Automatic transcription of polyphonic vocal music”

(McLeod, Schramm, Steedman, & Benetos, 2017).

3.1 Introduction

Voice separation refers to the allocation of the notes of a given piece of music into

streams of notes called voices, while voice assignment necessitates the additional step

of labelling each voice as belonging to a specific part or instrument. It can be difficult

to precisely define what constitutes a musical voice, and interested readers should refer

to Cambouropoulos (2008) for a full discussion on different possible definitions and

interpretations of musical voices. Cognitively, a voice simply refers to any set of notes

which a listener may hear as a coherent melody, no matter whether that stream is

monophonic (consisting of only non-overlapping notes) or polyphonic (containing any

number of simultaneous notes). However, in certain styles of musical, the idea of a

voice can even be ill-defined. For example, in some polyphonic piano music, voicing

can be unclear from the score, and, even when voicing seems to be notated in the

score, listeners may indeed disagree on which notes belong to each voice. Thus, in this

chapter, we focus on music which has well-defined voices, such as fugues and quartets.

Additionally, from a computational standpoint, it can be useful to restrict the defi-

nition of a voice to strictly monophonic streams of notes, especially when performing

voice separation or assignment as a preprocessing step for other music information

retrieval (MIR) tasks. For example, existing work on rhythmic structure detection

(van der Weij, 2012), pattern detection (Hsu, Liu, & Chen, 2001; de León & Inesta,

2007), query-by-tapping (Peters, Cukierman, Anthony, & Schwartz, 2006; Hanna &

Robine, 2009), and query-by-humming (Birmingham, Dannenberg, & Pardo, 2006;

Ryynanen & Klapuri, 2008) all require monophonic MIDI data as input. Furthermore,

even among MIR techniques which can be run on polyphonic data, many still per-

form better when run on monophonic input. For example, Bruderer, McKinney, and

Kohlrausch (2012) show that song segmentation is consistently more accurate when

run on monophonic input. Additionally, voice separation could be useful as the first

step towards a complete AMT system, and it was shown by Berg-Kirkpatrick et al.

(2014) that the use of such a model improves the accuracy of music transcription sig-

nificantly. Thus, for our work on voice separation, particularly in the context of creat-

ing a music language model for music transcription, we restrict ourselves to use only

monophonic voices.

3.2. From Live Performance MIDI 19

Towards the analysis of musical voices, Huron (2001) and Tymoczko (2008) in-

vestigate voice leading rules—rules which govern how voices evolve over time within

a single piece—from a cognitive perspective, and offer valuable insights into possible

voice separation rules, many of which we have applied to our model. Huron’s Common

Tone Rule, Chordal Tone Rule, and Avoid Leaps Rule all suggest that large melodic in-

tervals between consecutive notes within a single voice should be avoided, a property

which Tymoczko calls efficient voice leading. Likewise, Huron’s Part-Crossing Rule

and Part Overlap Rule suggest that two separate voices should not cross in pitch, even

if one voice has fallen silent, a concept referred to by Tymoczko as voice crossings.

A third principle suggested by Huron is that of temporal continuity—the idea that the

stream of notes should be relatively continuous within a single voice, and not have too

many gaps of silence. Temperley (2008) applies many of these concepts to construct-

ing a successful probabilistic model of melodic perception, a task closely related to

voice separation and assignment.

In Section 3.2, we introduce a voice separation model which is able to take as input

polyphonic MIDI data, including live performance data, and separate it into strictly

monophonic voices which can be used by MIR methods such as those listed above.

Like other voice separation systems, it can be run as a preprocessing step to those ex-

isting methods, or as a standalone voice separation model on the data itself. Unlike

most existing methods, however, our model allows for some limited overlap between

consecutive notes within a single monophonic voice, and we show that using this fea-

ture, its accuracy remains high when separating live performance MIDI into voices.

Next, in Section 3.3, we integrate this voice separation model with an acoustic multi-

pitch detection model and use the joint system to perform both multi-pitch detection

and voice assignment from audio recordings of a cappella music.

3.2 From Live Performance MIDI

This section presents an HMM which can be used to separate live performance MIDI

into monophonic voices. It works on two basic principles: that consecutive notes

within a single voice will tend to occur on similar pitches, and that there are short (if

any) temporal gaps between them. We also present an incremental algorithm which

can perform inference on the model efficiently, and show that our approach achieves

state-of-the-art results when run on a corpus of 78 compositions by J. S. Bach, each of

which has been separated into gold standard monophonic voices as suggested by the

20 Chapter 3. Voice Separation

original score. We also show that it can be used to perform voice separation on live

performance MIDI without an appreciable loss in accuracy. The code for the model

described in this section is available at https://github.com/apmcleod/voice-splitting.

3.2.1 Related Work

There are many existing algorithms which perform voice separation, many of which

are based on some of Huron and Tymoczyko’s principles above, though not all of them

were designed to be used for the same purpose as our model. Karydis, Nanopoulos,

Papadopoulos, Cambouropoulos, and Manolopoulos (2007), for example, describe a

more cognitively motivated voice separation model which attempts to separate MIDI

data into polyphonic voices, something we avoid, as noted above. The approach first

suggested by Kilian and Hoos (2002) and later expanded upon in a paper by Kilian

(2004) has a large number of parameters which must be adjusted by the user at run

time to produce the desired separation results, and therefore seems to be most useful

as an aid to the manual transcription of MIDI data.

While the methods above cannot be applied directly to monophonic voice separa-

tion on live performance MIDI, that is not to say that all of the concepts and techniques

used by them are irrelevant to the problem. Kilian (2004), for example, uses a Gaus-

sian window function in their evaluation of voice continuity, something which we use

as well in our model.

Chew and Wu (2004) propose a heuristic-based solution to the monophonic voice

separation problem. Metronomic MIDI data are separated into chronological sections

called “contigs,” each of which represents a time period in a song during which there

is a constant number of co-occurring notes. The notes within these contigs are then

separated into monophonic sequences of notes called “fragments.” Within a contig,

no two fragments may cross in pitch. To join fragments from consecutive contigs

into voices, a global optimisation approach is used which minimises the total pitch

difference between consecutive notes in each resulting voice.

Ishigaki, Matsubara, and Saito (2011) introduce a new strategy for connecting con-

tigs by prioritising those connections at locations where the number of co-occurring

notes is increasing. This is based on the assumption that new voices are more likely to

occur at a large pitch-distance away from the other voices than those which are just fin-

ishing, and thus should be easier to recognise. Guiomard-Kagan, Giraud, Groult, and

Levé (2016) improve further on contig-based voice separation, using musical features

3.2. From Live Performance MIDI 21

Figure 3.1: The first bar of the 15th Invention by Bach (BWV 786).

to compute a connection score for each potential fragment connection, and connect-

ing fragments in a way that attempts to maximise the overall connection score. In this

approach, however, note values are used during feature calculation, thus requiring met-

rically aligned data as input. Both of these approaches increase performance over the

original contig approach of Chew and Wu (2004).

All of the contig approaches perform well in general, but they have two weak-

nesses. First, since they each perform a global optimisation, they cannot be run in

real-time on live input. This may not seem like a problem when voice separation, a

relatively computationally light task, is the only thing being computed on a song, but

when it is only the first task in a series of other, more complicated MIR tasks, it could

become more important. The second drawback is that they will always group a contig

with n co-occurring notes into exactly n voices; however, there are cases where this is

incorrect. For example, in Figure 3.1, an excerpt from Bach’s 15th Invention (BWV

786), the first three notes will be grouped into a single monophonic contig, and then

into a single voice, even though the proper separation would be to assign the first note

to one voice, and group the second and third notes together in a different voice.

Moving past contigs towards statistical approaches, Kirlin and Utgoff (2005) de-

scribe VoiSe, a feature-based system for voice separation. However, it requires many

features related to a song’s time signature and tempo annotated, so it must be run on

metronomic MIDI data rather than live performance data. Additionally, it is trained

and evaluated on very limited excerpts (fewer than ten bars for each evaluation), and

its performance lags behind that of Chew and Wu (2004).

Madsen and Widmer (2006) propose a solution based on pitch proximity which

uses a small lookahead and tests all possible combination of grouping notes into voices

within that lookahead, minimising a cost function. However, the completeness values

22 Chapter 3. Voice Separation

they report in evaluation are substantially lower than the average voice consistency

results reported by Chew and Wu (2004) when run on the same data. Madsen and

Widmer themselves note that the two metrics are comparable (2006), so the difference

between their scores cannot be written off as simply a difference between the evalua-

tion metrics used.

Jordanous (2008) proposes a probabilistic approach to the problem of voice sepa-

ration based roughly on Chew and Wu’s method in that the input data is first searched

globally for periods during which the voice structure is more obvious. Then, the sur-

rounding notes are assigned to voices based on voice transition probabilities learned

from the data. There are, however, two drawbacks to this method. First, similarly to

Chew and Wu’s, the global search cannot be performed in real-time on live input. Sec-

ond, though the probabilities are based on pitch differences within a voice, temporal

gaps between consecutive notes within a voice are disregarded. The results reported

by Jordanous (2008) also fall below those of Chew and Wu (2004).

In recent years, neural models have been proposed for the task of voice separa-

tion. De Valk (2015) introduces three models—two neural networks and one HMM—

designed originally for lute tablature, but also applicable to other forms of music. The

neural models outperform the HMM significantly in all reported test cases. In practice,

the neural models require being given a maximum number of voices a priori, although

the HMM does not. All models are based on feature vectors for either notes or chords,

containing information about both individual notes as well as the polyphonic context

of each and metrical and rhythmic information (the metrical structure alignment must

also be known a priori). The feature vectors are fed into the models, which produce

a voice assignment for each note. Gray and Bunescu (2016) introduce another neural

network model using a similar feature vector, though it requires only that the key sig-

nature of a piece is known a priori since it uses scale degree as a feature. It is also able

to dynamically add new voices throughout the piece, thus not requiring as input the

maximum number of voices.

None of the approaches discussed so far are able to be run directly on live perfor-

mance MIDI without preprocessing the data with a quantisation step, which can add

errors. Duane and Pardo (2009) propose a heuristic solution, which can be run on

live performance data directly, where each note in a the input is treated as a node on

graph, and edges are added to that graph grouping the corresponding notes into voices.

Constraints are placed on which edges can be added to the graph so that the resulting

voices are always monophonic. The program decides which edges to add based on a

3.2. From Live Performance MIDI 23

weight function dependent on each note pair’s pitch and temporal difference. Nodes

are first grouped into segments based on note onset times, and edges are added be-

tween nodes within each segment. Then, the segments themselves are tied together

with edges based on another weighting function.

3.2.2 Proposed Solution

Our model, an HMM, is loosely based on Huron and Tymoczko’s principles of pitch

closeness and temporal continuity as described in Section 3.1 above. The model itself

is presented in Section 3.2.2.1, and we present an algorithm which can be used to

perform inference on our model incrementally in Section 3.2.2.2. A worked example

of our model being run on some MIDI data is shown in Section 3.2.2.3.

One novel aspect of our model is that, to our knowledge, it is the first to investigate

the principle of pitch closeness in a wider context than simply comparing the pitches

of consecutive notes. Rather, we use a weighted average of the most recent notes in a

voice (see Equation (3.4) below) and compare the pitch of a new note to that weighted

average. This has the benefit of allowing some large jumps (which do occur, although

they are rare) while still keeping each voice in a relatively stable pitch range, rather

than immediately shifting each voice to the pitch of the most recent note.

Additionally, our solution has a few more advantages over some of the existing

solutions. For one, it takes as input only note onset time, offset time, and pitch: no

metrical or harmonic information is required. The maximum number of voices is also

not required as input, nor is there a need to calculate it directly (many existing algo-

rithms set this to the greatest number of concurrent notes in the song); rather, voices

are added dynamically by the model as needed. Additionally, it allows for notes within

a single voice to overlap slightly, which eliminates the need to perform any preprocess-

ing such as quantisation on its input as most other solutions require. The fact that our

model does not require any information or alignment a priori, and does not constrain

voices to non-overlapping notes allows it to be run directly on live performances data,

even if no information is known about the performed piece. The incrementality of our

algorithm allows it in principle to be run in real-time, for example, on a live stream of

data. Table 3.1 compares our model to the most successful existing approaches from

Section 3.2.1 in the context of these properties.

Before getting into any more details, it will be useful to define the relevant prop-

erties of an input note n: pitch, onset time, and offset time. A note’s pitch Pitch(n) is

24 Chapter 3. Voice Separation

Model Incremental Live Voices Other

Chew and Wu (2004) C

Duane and Pardo (2009) X

Ishigaki et al. (2011) C

de Valk (2015) I Metrical alignment

Gray and Bunescu (2016) X Key signature

Guiomard-Kagan et al. (2016) C Metrical alignment

This work X X

Table 3.1: A comparison of our proposed HMM to the most successful existing ap-

proaches from Section 3.2.1 in the context of four properties: (1) Incremental: whether

the model is run incrementally from beginning to end; (2) Live: whether it can be applied

directly to live performance MIDI data without quanitisation as a preprocessing step; (3)

Voices: whether a maximum number of voices is required, either as input (I) or by an

initial calculation (C) before voice separation; and (4) Other: what additional information

(if any) is required a priori.

an integer on the range [0− 127] representing its pitch in equally-tempered keyboard

semitones. A note’s onset time On(n) represents the number of microseconds between

the beginning of the song and the onset of the note. Similarly, a note’s offset time

Off(n), represents the number of microseconds between the beginning of the song and

the offset of the note. It is also useful to define the duration of a note as the difference

between its offset and onset times as in Equation (3.1).

Dur(n) = Off(n)−On(n) (3.1)

3.2.2.1 Model

3.2.2.1.1 State Space Our model is an HMM where each state S represents a list of

monophonic voices Vi. A voice V is a list of notes n1→n ordered by onset time, where

On(ni) < On(ni+1). Within a single state, no two voices may contain the same note.

Furthermore, since we will apply our model to live performance data, rather than just

metronomic MIDI data, we allow for some minimal overlap between consecutive notes

within a voice to account for cases where the performer may remain on a note while

beginning to play the next (a brief discussion of how often and to what magnitude this

occurs in the data is found in Section 3.2.3.1). Specifically, we allow notes ni and ni+1

3.2. From Live Performance MIDI 25

to overlap if and only if Equations (3.2) and (3.3) are both satisfied. Equation (3.2)

ensures that the duration of the overlap comprises at most half of the duration of the

first note involved, while Equation (3.3) ensures that the overlap does not continue for

the entirety of the second note.

Off(ni)−On(ni+1)≤
Dur(ni)

2
(3.2)

Off(ni)< Off(ni+1) (3.3)

Each voice V also has a pitch, calculated by the function given in Equation (3.4), where

l is a tunable constant. A voice’s pitch is simply a weighted average of its l most recent

notes, where each successive note is weighed more heavily than the previous note by

a factor of two. This allows the voices to gradually change in pitch over time, rather

than jumping immediately to the pitch of each new note, while still enforcing Huron’s

Avoid Leaps Rule.

Pitch(V) =

min(l,|V |)
∑

i=0
(2i ∗Pitch(n|V |−i))

min(l,|V |)
∑

i=0
2i

(3.4)

Since the onset and offset times of each note are unbounded, and there are likewise

an unbounded number of notes in a given MIDI file, the state-space of our model is of

infinite size. Thus, instead of using discrete emission and transition probabilities, we

use emission and transition probability functions, described in the following sections.

3.2.2.1.2 Emission Function The emission function for each state is entirely de-

terministic: each state has exactly one possible emission with probability 1, although

multiple states may have identical emissions. Each state outputs a set N of notes, where

each note n within N has an equal onset time. That is, ∀n,n′ ∈ N,On(n) = On(n′).

Specifically, a state S outputs a set N of all notes n contained in any voice V ∈ S which

satisfy Equation (3.5). Conceptually, N is the set of the most recently played notes

within the state, and P(N|S) = 1.

On(n) = Max(On(n′)), ∀n′ ∈V,∀V ∈ S (3.5)

3.2.2.1.3 Transition Function Before we define our transition probability function,

we must define precisely what transitions exist within our model. A state S has a

transition to state S′ if and only if the following two conditions are satisfied: (1) the

set of notes contained by any voice in S′ which are not contained by any voice in S

26 Chapter 3. Voice Separation

must be exactly the set of notes determined by the emission function of S′ as defined

above; and (2) removing those notes from the voices of S′, and then removing any

voices from S′ which become empty as a result, must produce exactly the voices of S,

and these voices must appear in exactly the same order.

This transition from S to S′ is represented by TS,N,W , where S is the original state,

N is a list of the notes from the emission function of S′ ordered by increasing pitch,

and W is a list of integers with exactly one element for each note ni ∈ N, where wi

represents the voice V ∈ S to which the corresponding note ni should be added. No two

wi should be equal, and ∀wi,abs(wi)≤ |S|+Count(wi < 0). Each TS,N,W represents one

individual note transition for each (ni,wi) pair. These note transitions are handled in

order of increasing abs(wi), and the value of wi represents the following: if wi < 0, add

ni to a new voice V inserted at the with index of S; if wi > 0, add ni to the existing voice

Vwi ∈ S.

We can now define the probability of a given transition P(S′|S) = P(TS,N,W) as

simply the product of the probabilities of each individual note transition within it, as

shown in Equation (3.6), multiplied by an order score which penalises a note being

added to a voice out of pitch order.

P(TS,N,W) = ∏
0≤i≤|N|

P(S,ni,wi)∗order(S,ni,wi) (3.6)

The order function by default returns 1, but that value is halved for each of the follow-

ing cases that applies:

1. |w|> 1 and Pitch(V|w|−1)> Pitch(n)

2. 0 < w < |S| and Pitch(Vw+1)< Pitch(n)

3. −|S| ≤ w < 0 and Pitch(V|w|)< Pitch(n)

Case 1 is applicable when a note will be added to a voice and the preceding voice in

the state (if one exists) has a greater pitch than the pitch of the note, while cases 2 and

3 are mutually exclusive based on the sign of w, but each applies when a note will be

added to a voice and the succeeding voice in the state (if one exists) has a lower pitch

than the pitch of the note. Together, the cases of the order function work to minimise

voice crossings, though such crossings are not disallowed completely.

The probability of each individual note transition is the product of its pitch score

and its gap score, or a tunable constant if the note will be added to a new voice, as

3.2. From Live Performance MIDI 27

shown in Equation (3.7).

P(S,n,w) =

pitch(S,n,w)∗gap(S,n,w) w > 0

snew w < 0
(3.7)

A note transition’s pitch score is used to minimise melodic jumps within a voice, and

is computed using the Gaussian window function as shown in Equations (3.8) and

(3.9), where σp is a tunable parameter. A note transition’s gap score is used to prefer

temporal continuity within a voice, and is computed using the max function on the

result of the logarithmic function, as shown in Equation (3.10), where σg and gmin are

both tunable parameters.

pitch(S,n,w) = Gauss(Pitch(n)−Pitch(Vw),σp) (3.8)

Gauss(µ,σ) = e−
1
2 (

µ
σ
)2

(3.9)

gap(S,n,w) = max
(

ln
(
−On(n)−Off(last(Vw))

σg
+1
)
+1,gmin

)
(3.10)

Note that the offset time of the note within a voice is not used in any of the above

equations, so any two notes with equal pitch and onset time are treated as equally likely

by our model, regardless of their offset times (given that each transition will create a

valid resulting state). Note also that the transition probabilities out of a given state do

not necessarily sum to 1, but this is not important, as the values can be normalised with

a constant factor.

3.2.2.2 Inference

To find the most likely final state given our observed note sets we use a slightly mod-

ified Viterbi algorithm. (See Viterbi (1967) for an overview of the algorithm.) Our

observed data are the notes found in a given MIDI file, ordered by onset time. If

multiple notes have equal onset time, they are observed as a set.

We made two modifications to the Viterbi algorithm, each related to reducing the

search space of the algorithm, since the size of the search space increases exponentially

without any constraints. The first modification is applied when adding a note into a new

voice. Specifically, we only check those voice indices w which have the maximum

order score of any valid index. In practice, this ensures that we only try to insert a new

voice in pitch order with the surrounding voices when those voices have not crossed.

(When any surrounding voices have crossed, we try to insert the new voice at every

index bordering those voices). Secondly, we use beam search with a tunable beam size

28 Chapter 3. Voice Separation

Pitch

Time (ms)0 40 80 120 160 200

70

71

72

73

Figure 3.2: An example of the notes that might be found in a MIDI file, displayed in

a piano roll format. Here, each note is colour-coded based on the voice to which our

HMM would assign it.

b. After each iteration of the algorithm, we save only the b most likely states given the

observed data to that point.

3.2.2.3 Example

To help illustrate the workings of the model, we will now go through an example

of the Viterbi algorithm being run on it, given the MIDI data shown in Figure 3.2

(and assuming some reasonable setting of the parameters). Here, the notes have been

colour-coded according to the voice to which each will be assigned by our model.

For a diagram of this example, see Figure 3.3 where each note n is represented as

[Pitch(n),On(n)], and voices within a state hypothesis are grouped using braces. For

simplicity, we use a beam size of 2 in this example.

The initial state, S0, is empty, as no notes have been observed yet. After seeing

N1, there is no decision to be made, as the only valid transition is to add the observed

note into a new voice. Upon observing N2, we again have only one valid transition to

check. We cannot add this new note into the existing voice because it fails the overlap

constraint in Equation (3.2), and the new voice must be placed at index 2 of our state

due to it being out of pitch order with the existing V1, because of the optimisation

mentioned in Section 3.2.2.2.

Once we observe N3, however, there are a few possible state transitions to check.

Trivially, we could add the new note into a new voice at index 2 (the other indices

would be out of pitch order again), but assuming that snew has been set sufficiently low,

this transition will not be saved due to our beam size of 2. The new note could also be

added to either of the existing voices. Both the pitch score from Equation (3.8) and the

3.2. From Live Performance MIDI 29

S0 S1 S2 S3 S4 S5

N1 N2 N3 N4 N5

[70,0] [73,12] [71,78] [70,120] [73,184]

{[70,0]} {[70,0]}
{[73,12]}

{[70,0]

[71,78]}
{[73,12]}

{[70,0]

[70,120]}
{[73,12]

[71,78]}

{[70,0]

[70,120]}
{[73,12]

[71,78]

[73,184]}

{[70,0]}
{[73,12]

[71,78]}

{[70,0]

[71,78]}
{[73,12]

[70,120]}

{[70,0]

[71,78]

[73,184]}
{[73,12]

[70,120]}

Figure 3.3: An example of our model being run on the notes from Figure 3.2 with a

beam size of 2. Each observed note set’s border, and each note, is colour-coded based

on the voice to which it is finally assigned. The two most likely state hypotheses at each

step are listed in the large rectangles above the state diagram, with the more likely

hypothesis appearing on the bottom row. Each state hypothesis has an incoming arrow

indicating which prior state hypothesis was used to transition into that state.

30 Chapter 3. Voice Separation

gap score from Equation (3.10) are slightly greater when adding the new note to V2, so

we assign that transition a higher probability.

Next, we observe N4, and out of each current hypothesis state, besides adding any

new voices, the only valid transition is that which adds the new note into the voice

which does not currently contain the note [71,78], due to Equation (3.2). The differ-

ence in probability between the two remaining transitions is about a factor of 2, since

performing the given transition on the current most likely hypothesis state introduces

a pitch crossing, and therefore has an order score of 1/2 in Equation (3.6), due to case

1. Therefore, the two current hypothesis states each perform the transition and then

switch in order, as indicated by the arrows in the diagram.

Finally, we observe N5, and out of each current hypothesis state, besides adding

any new voices, the only valid transition is that which adds the new note into the voice

which does not currently contain the note [70,120], due to Equation (3.3). So, we

perform the valid transition on each hypothesis state, and the orders will not change

due to the transition probabilities being relatively close to each other.

3.2.3 Evaluation

3.2.3.1 Corpora

We evaluate our model on six distinct corpora:

1. The 15 two-part inventions by J. S. Bach.1

2. The 15 three-part sinfonias by J. S. Bach.1

3. The 24 fugues from The Well-Tempered Clavier, Book 1 (WTC I) by J. S. Bach.2

4. The 24 fugues from The Well-Tempered Clavier, Book 2 (WTC II) by J. S. Bach.2

5. The 28 movements from String Quartets, Op. 1, by J. Haydn.3

6. The 19 live performances of J. S. Bach inventions (5), fugues (5), and preludes

(9) (from WTC I and WTC II) from CrestMusePEDB, introduced by Hashida,

Matsui, and Katayose (2008).

1The inventions and the sinfonias were acquired from www.imslp.org.
2The fugues were acquired from www.musedata.org.
3The quartets were acquired from www.kunstderfuge.com.

3.2. From Live Performance MIDI 31

The first five corpora contain only metronomic MIDI data, while the sixth consists

solely of live performance MIDI data. For the Bach compositions (datasets 1–4 and 6),

each gold standard voice corresponds to an individual fugal voice as suggested by the

original score. For the Haydn quartets, each separate instrument part (violin I, violin

II, viola, and cello) is used as a gold standard voice, as in Duane and Pardo (2009);

however, these gold standard voices may not be entirely correct cognitively (as they

also note), since the melody often switches between instruments, especially between

the two violin parts.

In rare cases, most often on the final note of a piece, a single voice may contain

a chord. This is a problem for our model since we separate the pieces into strictly

monophonic voices. Therefore, in such cases, we manually remove all but the lowest-

pitched note in the chord as a preprocessing step. This makes musical sense, since it

has been suggested by Dixon (2001) among others that notes with lower pitch are more

salient than those with higher pitch. This sort of preprocessing is quite common: all

models which separate notes into monophonic voices must handle chords in an ad hoc

fashion, and those which we compare against either remove individual notes as we do,

or remove all sections of each piece which contain any chords. Such preprocessing is

particularly important for models which calculate the number of voices as the greatest

number of concurrent notes in each piece. In practice, since our model adds new

voices dynamically, running it without this preprocessing tends to result in it simply

adding an additional voice or two containing only the extra chord notes, particularly

for those pieces in which chords are only present at the end (such as those found in

our corpora). For pieces with more frequent chords, however, we would expect our

model’s performance to drop, and some additional logic would need to be added to

handle such chordal voices.

Each dataset presents a slightly different challenge. The inventions are the simplest

of the compositions, each containing exactly two voices. The sinfonias are slightly

more complicated, containing three voices each, and the fugues are the most compli-

cated of the Bach compositions, sometimes even containing more than four voices.

The quartets each consist of exactly four parts, but they can be more complicated than

the fugues in that the different parts, especially the two violin parts, are liable to cross

in pitch during a piece. The live performances are difficult in that the data is not clean.

That is, note onsets which, in the score, occur immediately after another note’s offset,

may not occur precisely at that time. This adds some noise into the data and makes

voice separation more difficult.

32 Chapter 3. Voice Separation

-60 -50 -40 -30 -20 -10 0 10 20 30 40+
0

1,000

2,000

3,000

4,000

5,000

18 82
413

1,192

2,069
1,596

5,161

611 384 168

1,174

Gap Length Percentage

C
ou

nt

Figure 3.4: A histogram of the gap lengths between consecutive notes in the live per-

formances, omitting those separated by a rest in the score, normalised as a percentage

of the initial note’s duration. Each bucket contains those percentages within 5% of the

bucket label, with the exception of the bucket labelled “40+”, which contains all gap

length percentages greater than 35%. A negative value indicates an overlap between

notes, while a positive value indicates a gap.

The extent of this live performance noise is quantified by the histogram in Figure

3.4. We measure the gap length between each pair of consecutive notes within every

voice of the live performances, omitting those pairs which are separated by a rest in

the score, resulting in a total of 12868 note pairs. We then normalise the gap lengths

by the duration of the initial note, and separate the resulting gap length percentages

into the buckets shown. Each bucket contains those percentages within 5% of the

bucket label, with the exception of the bucket labelled “40+”, which contains all gap

length percentages greater than 35%. A negative value indicates an overlap between

notes, while a positive value indicates a gap. It can be seen that, while about 40% of

consecutive note pairs have only a minimal overlap or gap, greater than 10% of them

overlap by at least one quarter of the initial note’s duration, and an additional 10% are

separated by a gap of at least that length. Note that performing the same calculation on

any of the other corpora would result in every note pair having a gap length of exactly

0.

3.2. From Live Performance MIDI 33

3.2.3.2 Baseline Methods

We compare our model to the best scoring models from Section 3.2.1, as summarised

in Table 3.1. Only one of the models (Duane & Pardo, 2009) can be run directly on live

performance input, and most of the others require the data to be more heavily annotated

than our model does. Thus, for comparison with Duane and Pardo (2009), we have run

their code directly on our data and report results on every dataset. However, for the

other methods, we simply compare against the numbers reported in their respective pa-

pers, on whichever of our datasets they also use. For de Valk (2015), we use the highest

scoring model in all cases, in application mode (as opposed to test mode, in which the

model uses ground truth voice assignment—rather than its own voice assignments—as

features for subsequent voice assignments). For Guiomard-Kagan et al. (2016), we use

the GA1 model, again the highest scoring.

3.2.3.3 Metrics

We use two different evaluation metrics: average voice consistency (AVC), as intro-

duced by Chew and Wu (2004); and F-measure, as used by Duane and Pardo (2009).

Statistical significance is calculated using a two-tailed t-test.

Before we can explain AVC, a couple of definitions are needed. First, let voice(n)

be the ground truth voice to which a note n belongs. Second, let voice(V) be the voice

to which the majority of notes n ∈ V belong. Then the Voice Consistency of a voice

VC(V) is given by Equation (3.11).

VC(V) =
|{n ∈V : voice(n) = voice(V)}|

|V |
(3.11)

The AVC of a given voice separation hypothesis state S is simply an average of

the voice consistencies (VCs) of every voice V ∈ S as shown in Equation (3.12). A

problem can be seen with this metric, particularly for a model such as ours which is

able to add new voices dynamically. Specifically, if our model puts a single note into a

voice by itself, the VC of that voice is a perfect 1.0. Extrapolating further, if a model

were to put every single note of a piece into a separate voice, it would receive a perfect

AVC of 100. Thus, we do not use AVC as our main evaluation metric, rather only for

comparison against Chew and Wu (2004) and Ishigaki et al. (2011) (on those datasets

which they also use), because we were unable to get either of their implementations.

34 Chapter 3. Voice Separation

Parameter Min Max Min Step

l 1 12 1

snew 1×10−11 1×10−7 0

σp 3 9 0.5

gmin 1×10−6 0.1 0

σg 1×104 1×106 0

Table 3.2: The minimum, maximum (both inclusive), and minimum step settings used

for each parameter during our grid search.

AVC(S) = 100∗
∑

V∈S
VC(V)

|S|
(3.12)

We report F-measure values for all of our corpora, and use it for our main evalua-

tion. The F-measure we use is just the standard F-measure, where we treat the voice

separation problem as one of binary classification where between each pair of notes,

our model must decide whether the two notes occur consecutively within a single voice

or not. Then, the F-measure is calculated by Equation (3.13).4

F-measure = 2
precision∗ recall
precision+ recall

(3.13)

3.2.3.4 Training

To train our model, we used a grid search. For each of the parameters, we manually set

a minimum and a maximum value, both inclusive. For some, we also set a minimum

step size, limiting the number of values to check even if the grid size we picked was

very small. See Table 3.2 for these values for each of our model’s parameters. For

all training, our beam size is restricted to 10. This is done to speed up training time,

though during testing we use a beam size of 25.

We use different training set splits for each of our test sets to avoid overfitting.

When evaluating on the inventions, we trained on the sinfonias and the fugues from

both books one and two. When evaluating on the sinfonias, we trained on the inven-

tions and the fugues from both books one and two. When evaluating on the fugues

from books one and two, we trained on the inventions and the sinfonias. When eval-

uating on the Haydn quartets, we used leave-one-out cross validation between the six
4Some papers report recall and precision values as soundness and completeness respectively.

3.2. From Live Performance MIDI 35

Corpus l snew σp gmin σg

Inventions 6 1×10−9 4 8×10−4 127000

Inventions∗ 9 3×10−8 6 9×10−5 127000

Sinfonias 5 4×10−8 4 9×10−5 127000

Sinfonias∗ 9 2×10−8 6 6×10−5 127000

WTC I & II 11 5×10−10 4 7×10−5 224000

WTC I & II∗ 9 1×10−9 5.5 8×10−5 224000

Haydn 1 9 1×10−10 4 9×10−5 321000

Haydn 2 8 2×10−11 5 8×10−5 321000

Haydn 3 7 2×10−8 7.5 0.01 20000

Haydn 4 7 1×10−9 4 8×10−5 321000

Haydn 5 9 1×10−9 4 7×10−5 321000

Haydn 6 7 1×10−11 4 8×10−5 321000

Live Inventions 7 1×10−9 4 0.01 515000

Live WTC 6 3×10−8 6 0.01 806000

Table 3.3: The parameter settings used when evaluating our model on our different test

sets. A * denotes where we have trained to optimise AVC rather than F-measure.

different quartets within the corpus. That is, for each of the six quartets, we trained on

the other five when evaluating on the sixth. When evaluating on the live corpus from

the CrestMusePEDB, we used leave-one-out cross validation between the inventions

and the fugues and preludes. That is, when evaluating the inventions, we trained on

the fugues and preludes and vice versa. The parameter settings used when evaluating

each set corpus are shown in Table 3.3.

Finally, to investigate our model’s ability to generalise across different musical

styles, we also report its performance on WTC I & II using the settings originally

used for Haydn 1, as well as its performance on the Haydn quartets using the settings

originally used for WTC I & II.

3.2.3.5 Results

First, we present our AVC results on Bach’s inventions, sinfonias, and fugues from

WTC I & II, and compare them to those reported by Chew and Wu (2004) and Ishigaki

et al. (2011). Although we do not believe that AVC is the best metric (see Section

36 Chapter 3. Voice Separation

Corpus Chew and Wu (2004) Ishigaki et al. (2011) This Work

Inventions 99.29 98.73 99.30
Sinfonias 93.35 95.27 94.30

WTC I & II 84.39 89.21 88.23

Overall 88.98 92.21 91.53

Table 3.4: A comparison of Average Voice Consistencies between our work and those

reported by Chew and Wu (2004) and Ishigaki et al. (2011).

3.2.3.3), we use it here for three reasons: (1) Both Chew and Wu (2004) and Ishigaki

et al. (2011) report AVC results, and we do not have their implementations; (2) it is

the only metric reported by both; and (3) neither reports F-measure, our main metric.

They each evaluate on the same pieces, though they handle chords by not separating

the last few notes of each input piece. Still, the results should be comparable, and they

are shown in Table 3.4. It is important to note that the scores found in this table are

averaged over all pieces in each category. That is, a value of 99.29 on the Inventions

means that the mean AVC over all 15 Inventions was 99.29.

Our model sees an improvement over Chew and Wu’s results, especially in the

fugues. Both our improvement there and our overall improvement are statistically sig-

nificant (p < .05). We don’t see much improvement on the inventions or the sinfonias,

most likely due to those pieces being simpler than the fugues. With only two or three

parts, there are fewer mistakes to be made, and therefore, there is much less room for

improvement. The difference in performance between our model and that of Ishigaki

et al. (2011) is not statistically significant.

Here, we look more closely at one simple case where our model outperforms both

Chew and Wu’s as well as Ishigaki et al.’s, specifically the 15th invention (BWV 786),

which was mentioned in Section 3.2.1 above. The first bar’s piano roll notation is

reproduced here in Figure 3.5. The red notes are all part of one voice, and the blue

notes are all part of a second voice. Both our model and the other approaches program

get this correct. However, while their programs incorrectly group the yellow note with

the red notes, our model is able to correctly group it with the blue notes. This is

entirely due to the contig constraint that portions of a song with the same number of

simultaneous notes (in this case one), must be grouped into exactly that many voices.

In fact, the model of Guiomard-Kagan et al. (2016) also makes this error since it is also

based on contigs.

3.2. From Live Performance MIDI 37

+ + + +1.1 1.2 1.3 1.4

50

55

60

65

70

Pitch

Beat

Figure 3.5: Invention 15 (BWV 786) in piano roll notation. The red notes all belong

to one voice, and the blue notes another. The yellow note is the one which would

be incorrectly grouped with the red notes by any contig-based approach (Chew & Wu,

2004; Ishigaki et al., 2011; Guiomard-Kagan et al., 2016), though our model groups it

correctly with the blue notes.

Next, we present our model’s F-measure results, and compare them against those

from Duane and Pardo’s (2009) program (the highest scoring of those mentioned in

Section 3.2.1 which can handle live performance input) on our data. Shown in Table

3.5, we see definite improvement over their results on the Bach compositions, signifi-

cantly for the sinfonias and all of the fugues (p < .05). On the Haydn quartets, how-

ever, our model performs slightly (though not significantly) worse than theirs, though

we believe this to be due to the problem with the gold standard as mentioned in Section

3.2.3.1 above. On the live Bach performances, we again see significant improvement

(p < .05), this time on both the inventions and the WTC performances.

The table also presents the performance of our model with the same parameter

settings, except the pitch history length l set to 1, effectively removing the pitch history.

This forces our model to check for pitch closeness between consecutive notes only (as

is done in previous work), rather than using the running average of the most recent

pitches in a voice (a novel aspect of our the proposed model). With l set to 1, the

F-measure for each corpus either remains the same, or drops by 0.01, which is not a

statistically significant difference. However, since large jumps in pitch within a voice

are quite rare and such jumps are precisely the cases we would expect the pitch history

to improve performance, it would be unreasonable to expect a statistically significant

38 Chapter 3. Voice Separation

Corpus Duane and Pardo (2009) This Work This Work (l = 1)

Inventions 0.98 0.99 0.99
Sinfonias 0.91 0.97 0.97
WTC I 0.92 0.97 0.96

WTC II 0.91 0.96 0.96
WTC I & II 0.91 0.97 0.96

Haydn 0.80 0.79 0.79

Live Inventions 0.91 0.98 0.97

Live WTC 0.82 0.94 0.93

Table 3.5: A comparison of the F-measures achieved by the program described by

Duane and Pardo (2009) against those of two versions of our model: one standard

version, and another using the same parameter settings, except with the pitch history

length l set to 1.

difference. Nonetheless, the fact that we do see a consistent decrease in performance

without the pitch history, small though it is, does suggest that the use of a pitch history

adds value to our model.

Investigating our model’s ability to generalise across different musical styles, we

also examine our its performance on WTC I & II using the settings originally used for

Haydn 1, as well as its performance on the Haydn quartets using the settings originally

used for WTC I & II. Both tests result in F-measures not significantly different from

our original reported F-measures (0.96 and 0.79 respectively), showing that our model

can indeed generalise across varied musical styles.

Diving more deeply into the comparison to Duane and Pardo’s model, it appears

that much of our improvement has come because our model more aggressively joins

notes together into voices. That is, most of the errors that their program has which ours

corrects are false negatives on their part. This occurs most often when a voice contains

a rest, and is therefore absent from a piece for a beat or more. For example, in bars

18 and 19 of the first fugue from the Well-Tempered Clavier (BWV 846), one of the

voices rests for two beats. This is shown in Figure 3.6, where the bold yellow notes

are those which our model correctly joins, but Duane and Pardo’s program fails to.

We also compare our model’s results against those of de Valk (2015), Gray and

Bunescu (2016), and Guiomard-Kagan et al. (2016), although each of these models

require much more information a priori than our model does (see Table 3.1). De Valk

3.2. From Live Performance MIDI 39

+ + + +18.3 18.4 19.1 19.2
50

55

60

65

70

75

80

Pitch

Beat

Figure 3.6: A piano roll representation of a portion of bars 18 and 19 from the 1st fugue

in the Well-Tempered Clavier (BWV 846). Each colour represents a different voice. The

two bold yellow notes are those which Duane and Pardo’s program does not join into a

single voice, though our model does.

(2015) and Gray and Bunescu (2016) each report results on a combined Bach corpus

consisting of the Inventions, Sinfonias, and WTC I & II. Their F-measures of 0.96 and

0.95 respectively fall just short of our model’s F-measure of 0.97 over the same set

of pieces (though neither of these differences are statistically significant). Guiomard-

Kagan et al. (2016) use WTC I as a training set, and report test results on WTC II,

achieving an F-measure of 0.97, slightly higher than our F-measure of 0.96, though

this difference is again not statistically significant. From these comparisons, it is clear

that, although each of these three models requires a priori information or alignment

about for each input file and cannot be run directly on live performance data, none of

them offer a statistically better voice separation than our model, which requires none.

An example where our model could find an improvement is in the 8th bar of the

fugue from the 41st fugue in the Well-Tempered Clavier (BWV 886). A piano roll

representation of that bar, in which the correct voices have been colour-coded, is shown

in Figure 3.7. The difficulty here is that the highest voice (red) ends at the exact

same time that the lowest voice (blue) begins. Rather than starting a new voice, our

model incorrectly shifts each existing voice down one as shown by the arrows in the

figure. One thing which might help our model in separating the voices properly in

cases such as this is looking for repeated patterns in the music. In the piece from this

40 Chapter 3. Voice Separation

+ + + +8.1 8.2 8.3 8.4
45

50

55

60

65

70

75

80

Pitch

Beat

Figure 3.7: A piano roll representation of the beginning of bar 8 from the 41st fugue in

the Well-Tempered Clavier (BWV 886). Each colour represents a different voice, and

the arrows represent mistakes made by our model.

example, each time a new voice enters, it plays nearly the same pattern of notes (both

rhythmically and melodically) for two bars. A model which is able to detect such

patterns would be able to recognise that pattern occurring in the lowest voice and infer

that those notes likely belong to a new voice. Additionally, the second-to-lowest voice

(yellow) is still playing the tail end of that pattern, and thus should probably continue

the pattern as the yellow notes in the figure do.

Another example of when our model errs is when two voices cross. Such cases are

difficult in general, given that the tendency of voices is not to cross; however, there are

often enough rhythmic or harmonic clues to allow a model to detect such crossings.

For example, in the 73rd bar of the fourth fugue in the Well-Tempered Clavier (BWV

849), the two middle voices cross. (The two voices in question are reproduced, colour-

coded, in Figure 3.8). The red voice contains only half notes, while the blue voice

contains only 8th notes. A model which is able to take such rhythmic information into

account should be able to detect the correct voice separation in this case; however, as

we want to avoid requiring any metrical alignment as input, such rhythmic information

would have to come from the use a beat tracking model.

3.2. From Live Performance MIDI 41

+ + + +73.1 73.2 73.3 73.4
60

65

70

Pitch

Beat

Figure 3.8: A piano roll representation of the middle two voices, colour-coded, during

the 73rd bar of the fourth fugue in the Well-Tempered Clavier (BWV 849). Here, our

model does not detect that the two voices have crossed even though this should be

clear based on the rhythms of each of the voices. (The red notes are thicker here only

so the crossing is easier to see.)

3.2.4 Conclusion

In this section, we have presented a new model for separating polyphonic MIDI data

into a set of monophonic voices, and argued that this sort of model can play a central

role in other MIR tasks. We have shown that our model achieves state-of-the-art results

on a variety of music, including Inventions, Sinfonias, and Fugues by Bach, as well

as Haydn String Quartets, and additionally, that it still achieves state-of-the-art results

when run on live performance data.

One advantage of our model is that it takes as input only note onset time, off-

set time, and pitch; no metrical or harmonic information is required, unlike in many

existing voice separation approaches. The maximum number of voices is also not re-

quired as input, nor is there a need to calculate it directly (many existing programs

set this to the greatest number of concurrent notes in the song). Rather, voices are

added dynamically by the model as needed. Our model can also be applied directly

to live performance data, without requiring note quantisation as a preprocessing step

(and thus introducing possible errors) like almost all existing approaches. Finally, our

model can be evaluated incrementally, and can therefore be used for real-time appli-

cations, starting processing before the entire piece is available. This combination of

properties makes our model unique among existing approaches, and yet it still achieves

state-of-the-art results, even compared with those models which require much more in-

42 Chapter 3. Voice Separation

formation a priori.

An additional novel feature of our model is its use of a pitch history when checking

for large jumps in pitch within a voice. This effectively allows for some jumps to occur

while still keeping each voice within a relatively stable pitch range. That the use of

this pitch history seems to increase performance suggests that it is an important aspect

of voice separation, and should be included in future models.

A shortcoming of the model is that it is easily confused by long-range dependen-

cies. For example, if there is a long rest in one or more voices, our model sometimes

has trouble deciding where to assign the notes which follow the rest. It was shown by

Granroth-Wilding and Steedman (2014), that long-range harmonic dependencies do

exist in music, and can be parsed successfully, so such long-range voice connections

should be possible to identify. One thing which might solve this and other mistakes

which our model makes would again be to incorporate some knowledge of rhythmic,

melodic, and harmonic patterns into it, as mentioned in relation to Figures 3.7 and 3.8

above. Given that we want to avoid the use of any a priori information or alignment,

this would require us to combine the model with some sort of beat tracker, for example

the one in (Dixon, 2001), in addition to a pattern detection algorithm, such as the one

proposed by Hsu et al. (2001), recalculating our model’s transition probabilities by

increasing the probabilities of those transitions which would continue some pattern.

Future work could also update our model to use learned transition probability dis-

tributions rather than our somewhat naive Gaussian window and log score functions.

We were unable to learn transition probabilities because of our small data set and large

state space, but with a larger corpus of data, we will be able to apply machine learn-

ing to more closely approximate the true probability distributions of transitions with

different pitch and gap differences, which may significantly improve our model’s per-

formance.

3.3 From Audio

This section presents a system for multi-pitch detection and voice assignment of au-

dio recordings of a cappella performances (where the number of voices is known a

priori) consisting of an integrated acoustic model and music language model. The

acoustic model, which performs spectrogram decomposition, extends probabilistic la-

tent component analysis (PLCA) using a 6-dimensional dictionary with pre-extracted

log-spectral templates, while the music language model is a modified version of the

3.3. From Audio 43

voice separation HMM presented in the previous section. By integrating the two

models, the system is able to detect multiple concurrent pitches in polyphonic vo-

cal recordings and assign each to a specific voice type of soprano, alto, tenor or bass

(SATB). We compare our system against multiple baselines, achieving state-of-the-

art results for both multi-pitch detection and voice assignment on a dataset of Bach

Chorales and another of Barbershop Quartets. We also present an additional evalu-

ation of our system using varied pitch tolerance levels to investigate its performance

at 20-cent pitch resolution. The code for the system described here is available at

http://inf.ufrgs.br/~rschramm/projects/music/musingers.

To our knowledge, this is the first attempt to integrate an acoustic model with a

music language model for the task of voice or instrument assignment from audio, as

well as the first attempt to propose a system for voice assignment in polyphonic a cap-

pella music. The approach described in this section focuses on recordings of singing

performances by vocal quartets without instrumental accompaniment; to that end we

use two datasets containing a cappella recordings of Bach Chorales and Barbershop

quartets. The proposed system is evaluated both in terms of multi-pitch detection and

voice assignment, where it reaches an F-measure of over 70% and 50% for the two

respective tasks.

3.3.1 Related Work

This section presents related work on multi-pitch detection with a specific focus on

vocal music and voice separation. An overview of prior work on multi-pitch detection

in general can be found in Chapter 2, while a discussion of related work on MIDI voice

separation can be found in Section 3.2.1.

In the context of multi-pitch detection, vocal music has been less often studied than

instrumental music, likely due to the complexity and variety of sounds which can be

produced by a singer. The timbre of two singers’ voices can differ greatly, and even

for a single singer, different vowel sounds produce extremely varied overtone patterns.

Bohak and Marolt (2016) propose a method for transcribing folk music containing

both instruments and vocals which takes advantage of melodic repetitions present in

such music using a musicological model for note-based transcription. A less explored

type of music is a cappella; in particular, vocal quartets constitute a traditional form

of Western music, typically dividing a piece into multiple vocal parts such as soprano,

alto, tenor, and bass (SATB). Schramm and Benetos (2017) propose an acoustic model

44 Chapter 3. Voice Separation

AUDIO TIME/FREQUENCY
ACOUSTIC MODEL

Multi-Pitch Detection

DICTIONARY

Voice Assignment

MUSIC LANGUAGE

MODEL

REPRESENTATION

Figure 3.9: Proposed system diagram.

based on spectrogram factorisation for multi-pitch detection of such vocal quartets (a

modified version of which we use here for our acoustic model).

A small group of systems (Bay, Ehmann, Beauchamp, Smaragdis, & Downie,

2012; Duan, Han, & Pardo, 2014; Grindlay & Ellis, 2011) have attempted to go beyond

multi-pitch detection, towards instrument assignment—also called timbre tracking—

where systems detect multiple pitches and assign each pitch to a specific source that

produced it. Bay et al. (2012), for example, track individual instruments in polyphonic

instrumental music using a spectrogram factorisation approach with continuity con-

straints controlled by an HMM. However, to our knowledge, no methods have yet been

proposed to perform both multi-pitch detection and voice assignment from polyphonic

vocal music.

3.3.2 Proposed Method

In this section, we present a system for multi-pitch detection and voice assignment

applied to audio recordings of polyphonic vocal music (where the number of voices

is known a priori) that integrates an acoustic model with a music language model.

First, we describe the acoustic model, a spectrogram factorisation process based on

PLCA. Then, we present the music language model, a modified version of the HMM

described in Section 3.2. Finally, a procedure is proposed for the integration of these

two components. Figure 3.9 illustrates the proposed system pipeline.

3.3. From Audio 45

3.3.2.1 Acoustic Model

The acoustic model is a variant of the spectrogram factorisation-based model proposed

by Schramm and Benetos (2017). The model’s primary goal is to explore the factori-

sation of an input log-frequency spectrogram into components that have a close con-

nection with singing characteristics such as voice type and the vocalisation of differ-

ent vowel sounds. We formulate the model dictionary templates into a 6-dimensional

tensor, representing log-frequency index (from the spectrogram’s log-frequency axis),

singer source (out of a collection of singer subjects used to construct the input dictio-

nary), pitch (in equally-tempered semitone scale), tuning deviation (from perfect equal

temperament) with 20-cent resolution, vowel type (English pure vowels), and voice

type (bass, baritone, tenor, alto, or soprano). Similar to Grindlay and Ellis (2011), the

singer source and vowel type parameters constrain the search space into a mixture-of-

subspaces, clustering a large variety of singers into a small number of categories. In

our model, the voice type parameter corresponds to the vocal part (SATB), where each

vocal part is linked to a distinct set of singers (the singer source). For details on the dic-

tionary construction, see Section 3.3.2.1.2. As time-frequency representation we use

a normalised variable-Q transform (VQT) spectrogram5 (Schörkhuber, Klapuri, Ho-

lighaus, & Dörfler, 2014) with a hop size of 20 ms and 20-cent frequency resolution.

For convenience, we have chosen a pitch resolution that produces an integer number

of bins per semitone (five in this case) and is also close to the range of just noticeable

differences in musical intervals (Benetos & Holzapfel, 2015).

The input VQT spectrogram is denoted as Xω,t ∈ RΩ×T , where ω represents log-

frequency and t time. In the model, Xω,t is approximated by a bivariate probability

distribution P(ω, t), which is in turn decomposed as in Equation (3.14).

P(ω, t) = P(t) ∑
s,p, f ,o,v

P(ω|s, p, f ,o,v)Pt(s|p)Pt(f |p)Pt(o|p)P(v)Pt(p|v) (3.14)

P(t) is the energy of the spectrogram at time t (a known quantity, calculated as

∑t P(ω, t)), and P(ω|s, p, f ,o,v) is the fixed, pre-extracted spectral template dictionary

(see Section 3.3.2.1.2). The variable s denotes the singer index (out of the collection of

singer subjects used to construct the input dictionary), p ∈ {21, ...,108} denotes pitch

5The VQT spectrogram uses a linearly widening bandwidth (Q) towards the lower frequencies, re-
sulting in a significantly simpler computation that requires a much shorter window length. This variable
bandwidth closely models human perception, and the VQT can therefore be used for music without ap-
preciable loss in accuracy because composers, knowing this, tend not to write music with closely-spaced
pitches at lower frequencies.

46 Chapter 3. Voice Separation

in equally-tempered semitone resolution (in MIDI scale), f denotes tuning deviation

from 12-tone equal temperament in 20-cent resolution (f ∈ {1, . . . ,5}, with f = 3

denoting perfect equal temperament), o denotes the vowel type, and v denotes the

voice type (soprano, alto, tenor, baritone, or bass).

The contribution of specific singer subjects from the training dictionary is mod-

elled by Pt(s|p), i.e. the singer contribution per pitch over time. Pt(f |p) is the tuning

deviation per pitch over time and finally Pt(o|p) is the time-varying vowel contribution

per pitch.6 Unlike the work of Schramm and Benetos (2017) (which uses Pt(v|p)), this

model decomposes the probabilities of pitch and voice type as P(v)Pt(p|v). That is,

P(v) can be viewed as a mixture weight that denotes the overall contribution of each

voice type to the whole input recording, and Pt(p|v) denotes the pitch activation for a

specific voice type (SATB) over time.

The factorisation can be achieved by the expectation-maximisation (EM) algo-

rithm (Dempster et al., 1977), where the unknown model parameters Pt(s|p), Pt(f |p),
Pt(o|p), Pt(p|v), and P(v) are iteratively estimated. In the Expectation step, we com-

pute the posterior as in Equation (3.15), and in the Maximisation step, each unknown

model parameter is then updated using the posterior from Equation (3.15) as shown in

Equations (3.16)–(3.20).

Pt(s, p, f ,o,v|ω) = P(ω|s, p, f ,o,v)Pt(s|p)Pt(f |p)Pt(o|p)P(v)Pt(p|v)
∑s,p, f ,o,v P(ω|s, p, f ,o,v)Pt(s|p)Pt(f |p)Pt(o|p)P(v)Pt(p|v)

(3.15)

Pt(s|p) ∝ ∑
f ,o,v,ω

Pt(s, p, f ,o,v|ω)Xω,t (3.16)

Pt(f |p) ∝ ∑
s,o,v,ω

Pt(s, p, f ,o,v|ω)Xω,t (3.17)

Pt(o|p) ∝ ∑
s, f ,v,ω

Pt(s, p, f ,o,v|ω)Xω,t (3.18)

Pt(p|v) ∝ ∑
s, f ,o,ω

Pt(s, p, f ,o,v|ω)Xω,t (3.19)

P(v) ∝ ∑
s, f ,o,p,ω,t

Pt(s, p, f ,o, p|ω)Xω,t (3.20)

The model parameters are randomly initialised, and the EM algorithm iterates over

Equations (3.15)–(3.20). In our experiments, we use 30 iterations, as this ensures that
6Although Pt(o|p) is not explicitly used in the proposed approach, it is kept to ensure consis-

tency with the RWC audio dataset (Goto, Hashiguchi, Nishimura, & Oka, 2004) structure (see Section
3.3.2.1.2).

3.3. From Audio 47

the model will converge; in practice, the model converges after about 18 iterations. In

order to promote temporal continuity, we apply a median filter to the Pt(p|v) estimate

across time, before its normalisation at each EM iteration, using a filter span of 240ms,

a duration of approximately half of one beat in Allegro tempo.

3.3.2.1.1 Acoustic Model Output The output of the acoustic model is a semitone-

scale pitch activity tensor for each voice type and a pitch shifting tensor, given by

P(p,v, t) =P(t)P(v)Pt(p|v) and P(f , p,v, t) =P(t)P(v)Pt(p|v)Pt(f |p) respectively. By

stacking together slices of P(f , p,v, t) for all values of p, we can create a 20-cent

resolution time-pitch representation for each voice type v as in Equation (3.21), where

f ′ ∈ {0, ...,439} denotes pitch in 20-cent resolution.

P(f ′,v, t) = P
(

f ′ (mod 5)+1,
⌊

f ′

5

⌋
+21,v, t

)
(3.21)

The voice-specific 20-cent resolution pitch activation output is given by P(f ′,v, t),

and the overall multi-pitch activations without voice assignment are given by P(f ′, t) =

∑v P(f ′,v, t). The 20-cent resolution multi-pitch activations P(f ′, t) are converted into

multi-pitch detections, represented by a matrix B(f ′, t), through a binarisation process

with a fixed threshold Lth. Specifically, pitch activations whose values are greater than

Lth are set to 1 in matrix B, while all others are set to 0.

This binary matrix B(f ′, t) is then post-processed in order to obtain more accurate

pitch activations. In this step, we scan each time frame of the matrix B, replacing

the pitch candidates by the position of spectrogram peaks detected from Xω,t that are

validated by the minimum pitch distance rule shown in Equation (3.22), where B(f ′, t)

represents each binarised pitch activation at time frame t.

(∆peaks(Xt ,B(f ′, t))< T1)∨ (∆peaks(Xt ,B(f ′, t−1))< T2) (3.22)

The function ∆peaks returns the minimum pitch distance between the selected list

of peak candidates in Xt and each pitch candidate B(f ′, t) and B(f ′, t−1), respectively.

The use of the previous frame (t−1) helps to ensure temporal continuity when a pitch

candidate is eventually removed by the Lth threshold.

3.3.2.1.2 Dictionary extraction The dictionary P(ω|s, p, f ,o,v) with spectral tem-

plates from multiple singers is built based on English pure vowels (monophthongs).

The dictionary uses spectral templates extracted from solo singing recordings in the

48 Chapter 3. Voice Separation

Musical Instrument Sound subset of the RWC database (RWC-MDB-I-2001 No. 45–

49) (Goto et al., 2004). The recordings contain sequences of notes following a chro-

matic scale, where the range of notes varies accordingly to the tessitura of distinct

vocal parts, and each singer sings a scale with each of five distinct English vowels

(/a/, /æ/, /i/, /6/, /u/). In total, we have used 15 distinct singers: 9 male and 6 female,

consisting of 3 vocalists for each voice type (bass, baritone, tenor, alto, and soprano).

Although the aim of this work is the transcription of vocal quartets, we keep the

spectral templates from all five voice types in the dictionary because we do not know

in advance the voice types present in each audio recording. This decision allows the

dictionary to cover a wider variety of vocal timbres during the spectral decomposition,

although not all of the resulting voice assignment probabilities will be used during its

integration with the music language model for a single song. Rather, our model dy-

namically aligns one of the dictionary’s voice types to each vocal part in a song. This

dynamic dictionary alignment is based on the music language model’s voice assign-

ments, and is discussed further in Section 3.3.2.3.

The fundamental frequency (f0) sequence from each monophonic recording is first

estimated using the Probabilistic YIN (PYIN) algorithm (Mauch & Dixon, 2014).

Then, a time-frequency representation is extracted using a VQT with 60 bins per oc-

tave. A spectral template is extracted for each frame, regarding singer source, vowel

type, and voice type. To incorporate multiple estimates from a single pitch, the set of

estimates falling in the same pitch bin are replaced by its metrically trimmed mean,

discarding 20% of the samples as possible outliers. The use of the metrically trimmed

mean aims to reduce the influence of possible pitch inaccuracies obtained from the

automatic application of the PYIN algorithm. However, there is no guarantee that the

final estimate will be free of eventual outliers. The set of spectral templates are then

pre-shifted across log-frequency in order to support tuning deviations for ±20 and

±40 cent, and are stored into a 6-dimensional tensor P(ω|s, p, f ,o,v). Due to a lack

of data from the chromatic scales, the resulting dictionary P(ω|s, p, f ,o,v) has some

pitch templates missing, as shown in Figure 3.10a.

To address this issue, we have investigated different ways to fill out the missing

templates in the dictionary, including spectrum estimation by replication (de A. Sca-

tolini, Richard, & Fuentes, 2015; Benetos et al., 2014), linear and nonlinear interpo-

lation, and a generative process based on Gaussian mixture models, inspired by Goto

(2004) and Kameoka, Nishimoto, and Sagayama (2007). We have chosen a replica-

tion approach, where existing templates belonging to the dictionary are used to fill in

3.3. From Audio 49

pitch - midi scale
40 45 50 55 60 65 70 75 80

ω
 -

 v
a

ri
a

b
le

 Q
-T

ra
n

s
fo

rm

100

150

200

250

300

350

400

450

(a)

pitch - midi scale
40 45 50 55 60 65 70 75 80

ω
 -

 v
a

ri
a

b
le

 Q
-T

ra
n

s
fo

rm

100

150

200

250

300

350

400

450

(b)

Figure 3.10: Example templates from the /a/ vowel utterance of a single singer: (a)

original templates from the VQT spectrogram; (b) revised dictionary templates following

replication.

the missing parts of the pitch scale, as it has been shown to achieve the best perfor-

mance (Kirchhoff, Dixon, & Klapuri, 2013). In this approach, the spectral shape of

a given pitch pn is repeated (with the appropriate log-frequency shift) over all subse-

quent pitches p ∈ [pn+1, pm−1] until another template is found (the pitch template pm).

Figure 3.10b illustrates the resulting dictionary templates of one singer example (for

the vowel /a/) from our dataset, following the above replication process.

3.3.2.2 Music Language Model

The music language model attempts to assign each detected pitch to a single voice

based on musicological constraints. It is a variant of the voice separation HMM de-

scribed in Section 3.2, and only the differences between the original HMM and this

variant are described here.

The observed data for the HMM here are notes generated from the acoustic model’s

binarised 20-cent resolution multi-pitch activations B(f ′, t), rather than notes read in

from a MIDI file. Each activation generates an observed note n with pitch Pitch(n) =

b f ′
5 c, onset time On(n) = t, and offset time Off(n) = t + 1 (and therefore a duration

Dur(n) = 1). Duplicates are discarded in the case where two 20-cent resolution detec-

tions map to the same semitone pitch. Ot represents this set of observed notes at frame

t.

50 Chapter 3. Voice Separation

3.3.2.2.1 State Space In this version of the HMM, each state again represents a

list of monophonic voices. However, here we assume that the number of voices in a

song is known a priori. Thus, in the HMM, a state St at frame t contains a list of M

monophonic voices Vi, 1 ≤ i ≤ M, rather than allowing the model to add new voices

dynamically. M is set via a parameter, and in this work, M = 4. In the initial state S0,

all of the voices are empty.

That this version of the HMM is given the number of voices a priori represents a

significant change from the assumptions of the previous version from Section 3.2. In

practice, due to noisy pitch detections from the acoustic model (in the form of false

positives), such knowledge is necessary to ensure good performance.

3.3.2.2.2 Emission Function A state St emits a set of notes with onset at time t,

with the constraint that a state containing a voice with a note at onset time t must emit

that note. The probability of a state St emitting the note set Ot is shown in Equation

(3.23), using the voice posterior Pt(v|p) from the acoustic model.

P(Ot |St) = ∏
n∈Ot

Pt(v = i|p = Pitch(n)) n ∈Vi ∈ St

1 otherwise
(3.23)

Notice that a state is not penalised for emitting notes not assigned to any of its

voices. This allows the model to better handle false positives from the multi-pitch

detection. For example, if the acoustic model detects more than M pitches, the state is

allowed to emit the corresponding notes without penalty. We do, however, penalise a

state for not assigning a voice any note during a frame, but this is handled by Ψ(W)

from Equation (3.25), described in the following section.

3.3.2.2.3 Transition Function While the previous HMM’s valid transitions were

enumerated by use of the deterministic emission function, that is not possible here with

the new probabilistic emission function. Rather, a state St−1 has a transition to state

St if and only if each voice Vi ∈ St−1 can either be transformed into the corresponding

Vi ∈ St by assigning to it a single note with onset time t, or if it is identical to the

corresponding Vi ∈ St .

This transition from St−1 to St can be represented by the variable TSt−1,Nt ,Wt , where

St−1 is the original state, Nt is a list of every note with onset time t assigned to a voice

in St , and Wt is a list of integers, each representing the voice assignment index for the

corresponding note Nt . Specifically, Nt and Wt are of equal length, and the ith integer

3.3. From Audio 51

in Wt represents the index of the voice to which the ith note in Nt is assigned in St .

Notice that here, Nt only contains those observed notes which are assigned to a voice

in St , rather than all observed notes. Also notice that, because new voices cannot by

dynamically added, each element in Wt is non-negative, unlike in the previous HMM.

The HMM transition probability P(St |St−1) is defined as P(TSt−1,Nt ,Wt), shown in

Equation (3.24). The first term in the equation is a function representing the voice

assignment probability, and is defined in Equation (3.25), where the parameter Pv rep-

resents the probability that a given voice contains a note in a frame.

P(TSt−1,Nt ,Wt) = P(Wt)
|Nt |

∏
i=1

P(Vwi,ni)∗order(St−1,ni,wi) (3.24)

P(W) =
M

∏
j=1

Pv j ∈W

1−Pv j /∈W
(3.25)

The function order(St−1,n,w) is a penalty function used to minimise voice cross-

ings as in the previous HMM; however, two changes have been made. First, because w

can no longer be negative, the cases have been simplified. Additionally, it still returns

by default 1, but its output is multiplied by a parameter Pcross—representing the prob-

ability of a voice being out of pitch order with an adjacent voice—rather than 1
2 , for

violating each of the following cases:

1. w > 1 and Pitch(Vw−1)> Pitch(n)

2. w < M and Pitch(Vw+1)< Pitch(n)

Cases 1 and 2 apply when a note is out of pitch order with the preceding or succeeding

voice in the state respectively.

P(V,n) represents the probability of a note n being assigned to a voice V , and is the

product of a pitch score and a gap score as in Equation (3.26). Notice that the w < 0

case has been removed compared with Equation (3.7).

P(V,n) = pitch(V,n)∗gap(V,n) (3.26)

The pitch score, used to minimise melodic jumps within a voice, is computed sim-

ilarly to the previous HMM, as shown in Equation (3.27), where the Gauss function

used is again the Gaussian window function defined in Equation (3.9). The gap score

is used to prefer temporal continuity within a voice, and is computed similarly to the

52 Chapter 3. Voice Separation

Pitch

Frame1 2 3 4

40

41

42

43

X

X

X

X

X

Figure 3.11: An example of an input to the music language model given a simple song

with only two voices. Here, for each detected pitch, there are two bars, representing

the relative value of Pt(p|v) for each voice (noted by colour) at that frame. The ground

truth voice assignment for each detected note is given by a check mark next to the bar

representing the correct voice. Notice that there is a false positive pitch detection at

pitch 41 at frame 3.

previous HMM using Equation (3.28). Both pitch(V,n) and gap(V,n) return 1 if V is

empty.

pitch(V,n) = Gauss(Pitch(n)−Pitch(V),σp) (3.27)

gap(V,n) = max
(

ln
(
−On(n)−Off(last(V))

σg
+1
)
+1,gmin

)
(3.28)

3.3.2.2.4 Inference To find the most likely final state given our observed note sets,

we use the Viterbi algorithm (Viterbi, 1967) with beam search with beam size b. That

is, after each iteration, we save only the b most likely states given the observed data

to that point, in order to handle the complexity of the HMM. An simple two-voice

example of the HMM being run discriminatively can be found in Figures 3.11 and

3.12.

Figure 3.11 shows example input pitch detections, where empty grid cells represent

pitches which have not passed the PLCA’s post-processing binarisation step, and the

bars in the other cells represent relative values of Pt(p|v) for each colour-coded voice.

There is a check mark next to the bar representing the ground-truth voice assignment

3.3. From Audio 53

for each detected pitch. Notice that there is no check mark in the cell representing

pitch 41 at frame 3, indicating a false positive pitch detection.

Figure 3.12 shows the HMM decoding process of the input from Figure 3.11, using

a beam size of 2 and 2 voices. Notes are represented as “[pitch, frame]”, and are colour-

coded based on their ground truth voice assignment. Again, notice false positive pitch

detection [41,3]. In this figure, the emission sets Ot are shown on the bottom, and the

boxes below each Ot node list the emitted notes in decreasing pitch order. Meanwhile,

the voices contained by a state at each timestep are listed in the boxes above each St

node, where voices are listed in decreasing pitch order, and are separated by braces.

The most likely state hypothesis at each timestep is on the bottom row, and each state

box (except for S0) has an incoming arrow indicating which prior state hypothesis was

used to transition into that state. Those state hypotheses with an entirely correct voice

assignment are represented by a thick border.

Initially, S0 contains 2 empty voices. Next, O1 is seen, and the most likely voice

assignment is also the correct one, assigning the pitches to the voices in decreasing

pitch order. The 2nd hypothesis for S1 is very unlikely: the two voices are out of pitch

order with each other, and its values of Pt(p|v) are lower than the correct assignments.

Thus, once O2 is seen at frame 2, that hypothesis drops out and both hypothesis S2

states transition from the most likely S1 state. However, due to noisy Pt(p|v) estimates

from the PLCA, the most likely S2 contains an incorrect assignment for the note [42,2],

while the 2nd S2 hypothesis is correct. In S3, however, these hypotheses flip back,

resulting in the correct overall voice assignment for this example input. Notice that

the false positive pitch detection [41,3] is not assigned to any hypothesis state since its

values of Pt(p|v) are relatively small. Meanwhile, the Pt(p|v) estimates from the PLCA

for the other 2 pitches are quite good, and allow the HMM to correct itself (assuming

good parameter settings), judging that the voice {[43,1], [42,2], [43,3]} in the higher

voice is more likely than the voice {[40,1], [42,2], [40,3]} in the lower voice, even

given the noisy Pt(p|v) estimates for the note [42,2].

3.3.2.3 Model Integration

In this section, we describe the integration of the acoustic model and the music lan-

guage model into a single system which jointly performs multi-pitch detection and

voice assignment from audio. The pitch activations Pt(p|v) for each voice type from

the PLCA dictionary (bass, baritone, tenor, alto and soprano) are quite noisy, resulting

in very low accuracy for voice assignment, as can be seen from our results (Table 3.7,

54 Chapter 3. Voice Separation

S0 S1 S2 S3

O1 O2 O3

{[43,1], [40,1]} {[42,2]} {[43,3], [41,3],

[40,3]}

{}
{}

{[43,1]}
{[40,1]}

{[43,1]}
{[40,1], [42,2]}

{[43,1], [42,2],

[43,3]}
{[40,1], [40,3]}

{[40,1]}
{[43,1]}

{[43,1], [42,2]}
{[40,1]}

{[43,1], [43,3]}
{[40,1], [42,2],

[40,3]}

Figure 3.12: An example of the music language model being run on the detected

pitches from Figure 3.2 with a beam size of 2 and 2 voices. Notes are represented

as “[pitch,frame]”, and are colour-coded based on their ground truth voice assignment.

The observed note sets are listed beneath each Ot . Notice the false positive pitch de-

tection [41,3] in O3. The two most likely state hypotheses at each step are listed in the

large rectangles above each state St , where the voices are notated with braces. The

most likely state hypothesis at each step appears on the bottom row, and each state

has an incoming arrow indicating which prior state hypothesis was used to transition

into that state. Those state hypotheses with an entirely correct voice assignment are

represented by a thick border.

3.3. From Audio 55

row VOCAL4-MP). However, we have found that a good prior distribution for Pt(p|v)
can drive the spectrogram factorisation towards a more meaningful voice assignment.

This prior is given by the music language model, and its integration into the system

pipeline is performed in two stages.

Since multi-pitch detections from the acoustic model are the input for the music

language model, spurious detections can result in errors during the voice separation

process. Therefore, in the first stage, we run the EM algorithm using only the acoustic

model from subSection 3.3.2.1 for 15 iterations to allow for convergence to stable

multi-pitch detections. Next, the system runs for 15 more EM iterations, this time also

using the music language model. During each EM iteration in this second stage, the

acoustic model is run first, and then the language model is run on the resulting multi-

pitch detections. To intergrate the two models, we apply a fusion mechanism inspired

by the one used by Giannoulis, Benetos, Klapuri, and Plumbley (2014) to improve the

acoustic model’s pitch activations based on the resulting voice assignments.

The output of the language model is introduced into the acoustic model as a prior

to Pt(p|v). During the acoustic model’s EM updates, Equation (3.19) is modified as:

Pnew
t (p|v) = αPt(p|v)+(1−α)φt(p|v), (3.29)

where α is a weight parameter controlling the effect of the acoustic and language model

and φ is a hyperparameter defined as:

φt(p|v) ∝ Pa
t (p|v)Pt(p|v). (3.30)

Pa
t (p|v) is calculated from the most probable final HMM state Stmax using the pitch

score pitch(V,n) from the HMM transition function of Equation (3.27). For V , we

use the voice Vv ∈ Stmax as it was at frame t − 1, and for n, we use a note at pitch

p. The probability values are then normalised over all pitches per voice. The pitch

score returns a value of 1 when the V is an empty voice (thus becoming a uniform

distribution over all pitches). The hyperparameter of Equation (3.30) acts as a soft

mask, reweighting the pitch contribution of each voice based on detected pitches from

the previous iteration.

Performance depends on a proper alignment between the voice types present in

each song and the voice types present in the PLCA dictionary. Therefore, we dynami-

cally assign one of the five voice types present in the dictionary (see Section 3.3.2.1.2)

to each of the voices extracted by the music language model. During the first integrated

EM iteration, the acoustic model’s voice probabilities Pt(p|v) are set to a uniform dis-

tribution upon input to the music language model. Additionally, we cannot be sure

56 Chapter 3. Voice Separation

which voice types are present in a given song, so we run the language model with

M = 5. Here, the acoustic model’s detections contain many overtones, and we do

not want to simply use M = 4, because many of the overtones are actually assigned a

slightly greater probability than the correct notes by the acoustic model. Rather, the

overtones tend to be higher in pitch than the correct notes, and thus are almost exclu-

sively assigned to the fifth voice by the HMM. These decisions combine to allow the

music language model to drive the acoustic model towards the correct decomposition

without being influenced by the acoustic model’s initially noisy voice type probabili-

ties.

After this initial HMM iteration, we make the dynamic dictionary voice type as-

signments using Equation (3.31).

VoiceType(Vi) = argmax
v

∑
p,t

Pt(p|v)Pa
t (p|Vi), (3.31)

Each voice Vi from the HMM is assigned the voice type v from the dictionary that gives

the greatest correlation between the (initial, non-uniform) PLCA voice probabilities

Pt(p|v) and the HMM voice priors Pa
t (p|Vi). This alignment procedure begins with

the HMM’s lowest voice and performs a greedy search, such that for each subsequent

voice, the argmax only searches over those dictionary voice types not already assigned

to a lower HMM voice. This dynamic dictionary voice type assignment allows the

model to decide which voice types are present in a given song at runtime. For all

subsequent iterations, this voice type assignment is saved and used during integration.

Additionally, the HMM is now run with M = 4, and the voice type assignment is used

to ensure that the PLCA output Pt(p|v) estimates correspond the correct voice indices

in the HMM.

We also place certain constraints on the HMM during its first iteration. Specifically,

where Ot is the set notes observed at frame t: (1) if |Ot | ≤ M, each note in Ot must

be assigned to a voice in St ; and (2) if |Ot |> M, the voices in St must contain exactly

the M most likely pitch activations from Ot , according to P(p, t) from the acoustic

model, where ties are broken such that lower pitches are considered more likely (since

overtones are the most likely false positives).

The final output of the integrated system is a list of the detected pitches at each

time frame which are assigned to a voice in the most probable final HMM state Stmax ,

along with the voice assignment for each after the full 30 EM iterations.

3.3. From Audio 57

3.3.3 Evaluation

3.3.3.1 Datasets

We evaluate the proposed model on two datasets of a cappella recordings: one of 26

Bach Chorales7 and another of 22 Barbershop quartets,8 in total 104 minutes. Each

file is in wave format with a sample rate of 22.05 kHz and 16 bits per sample. Each

recording has four distinct vocal parts, with one part per channel. The recordings

from the Barbershop dataset each contain four male voices, while the Bach Chorale

recordings each contain a mixture of two male and two female voices.

A frame-based pitch ground truth for each vocal part was extracted using a mono-

phonic pitch tracking algorithm (Mauch & Dixon, 2014) on each individual mono-

phonic track with default settings. Experiments are conducted using the mix down of

each audio file with polyphonic content, not the individual tracks.

3.3.3.2 Evaluation Metrics

We evaluate the proposed system on both multi-pitch detection and voice assign-

ment using the frame-based precision, recall and F-measure as defined in the MIREX

multiple-F0 estimation evaluations (Bay, Ehmann, & Downie, 2009), with a frame hop

size of 20 ms.

The F-measure obtained by the multi-pitch detection is denoted as Fmp, and for

this, we combine the individual voice ground truths into a single ground truth for each

recording. For voice assignment, we simply use the individual voice ground truths and

define voice-specific F-measures of Fs, Fa, Ft , and Fb for each respective SATB vocal

part.9 We also define an overall voice assignment F-measure Fva for a given recording

as the arithmetic mean of its four voice-specific F-measures. Statistical significance is

calculated using a two-tailed t-test.

We use these F-measures rather than the graph-based F-measure from Section

3.2.3.3, because there can be many false positives from multi-pitch detection, and these

are not easy to reconcile with the graph-based metric.

7The Bach Chorales were acquired from http://www.pgmusic.com/bachchorales.htm.
8The Barbershop Quartets were acquired from http://www.pgmusic.com/barbershopquartet

.htm.
9Although the Barbershop recordings may not contain the voices SATB, for evaluation, we consider

the lowest voice bass, followed by tenor, alto, and soprano, no matter the technical voice type.

58 Chapter 3. Voice Separation

3.3.3.3 Training

To train the acoustic model, we use recordings from the RWC dataset (Goto et al.,

2004) to generate the 6-dimensional dictionary of log-spectral templates specified in

Section 3.3.2.1, following the procedure described in Section 3.3.2.1.2. For the post-

processing refinement step of the acoustic model, we use T1 = 1 and T2 = 3, based on

density distributions of |∆peaks|, estimated from measurements in our datasets using

the pitch ground truth.

For the HMM, where applicable, we use the values reported in Table 3.3, trained

on the fugues (row Inventions), except that we double the value of σp to 8 and use

a larger beam size of 50 to better handle noise from the acoustic model. We also

introduce two new parameters to the system: the voice crossing probability Pcross and

the voice assignment probability Pv. We use MIDI files of 50 Bach Chorales10 (none

of which appear in the test set), splitting the notes into 20 ms frames, and measure the

proportion of frames in which a voice was out of pitch order with another voice, and

the proportion of frames in which each voice contains a note. This results in values of

Pcross = 0.006 and Pv = 0.99, which we use for testing.

To train the model integration weight α, we use a grid search on the range [0.1,0.9]

with a step size of 0.1, maximising Fva for each dataset. Similarly, the value of the

threshold Lth that is used for the binarisation of the multi-pitch activations in Section

3.3.2.1.1 is based on a grid search on the range [0.0,0.1] with a step size of 0.01, again

maximising Fva for each dataset. To avoid overfitting, we employ cross-validation,

using the parameter settings that maximise the Chorales’ Fva when evaluating the Bar-

bershop Quartets, and vice versa; nonetheless, the resulting parameter settings are the

same for both datasets: α = 0.1 and Lth = 0.01.

3.3.3.4 Results

We use five baseline methods for evaluation: Vincent et al. (2010), which uses an

adaptive spectral decomposition based on NMF; Pertusa and Iñesta (2012), which se-

lects candidates among spectral peaks, validating candidates through additional audio

descriptors; Schramm and Benetos (2017), a PLCA model for multi-pitch detection

from multi-singers, similar to the acoustic model of our proposed system, although it

also includes a binary classifier to estimate the final pitch detections from the pitch

activations; as well as two multi-pitch detection methods from the Essentia library

10MIDI files available at http://kern.ccarh.org/.

3.3. From Audio 59

Model Bach Chorales Barbershop Quartets

Klapuri (2006) 54.62 (3.00) 48.24 (4.50)

Salamon and Gomez (2012) 49.52 (5.18) 45.22 (6.94)

Vincent et al. (2010) 53.58 (6.27) 51.04 (8.52)

Pertusa and Iñesta (2012) 67.19 (3.82) 63.85 (6.69)

Schramm and Benetos (2017) 71.03 (3.33) 70.84 (6.17)

VOCAL4-MP 63.05 (3.12) 59.09 (5.07)

VOCAL4-VA 71.76 (3.51) 75.70 (6.18)

Table 3.6: Multi-pitch detection results, where standard deviations are shown in paren-

theses. The post-processing refinement step described in Section 3.3.2.1.1 was also

run on the output of all cited methods. VOCAL4-MP represents our proposed method

with the acoustic model only, while VOCAL4-VA refers to our fully integrated model.

(Bogdanov et al., 2013): Klapuri (2006), which sums the amplitudes of harmonic par-

tials to detect pitch presence; and Salamon and Gomez (2012), which uses melodic

pitch contour information to model pitch detections. For all five of these methods,

we also run the post-processing refinement step described in Section 3.3.2.1.1 on

their output. The above systems are evaluated against two versions of our proposed

model: VOCAL4-MP, using only the acoustic model described in Section 3.3.2.1; and

VOCAL4-VA, using the fully integrated model.

From the multi-pitch detection results in Table 3.6, it can be seen that our integrated

model VOCAL4-MP achieves the highest Fmp on both datasets, and it outperforms all

other models significantly (p < .05) for both datasets. The fact that VOCAL4-VA

outperforms VOCAL4-MP by so much indicates that the music language model is

indeed able to drive the acoustic model to a more meaningful factorisation.

For voice assignment, using each baseline method above which does not output any

voice assignment information (Klapuri, 2006; Salamon & Gomez, 2012; Vincent et al.,

2010; Pertusa & Iñesta, 2012), we run our music language model once on its output

with default settings and M = 4, after the post-processing refinement step. Meanwhile,

for Schramm and Benetos (2017), as well as VOCAL4-MP, the voice assignments

are derived from each model’s probabilistic voice assignment estimates (Pt(v|p) for

Schramm and Benetos (2017), and Pt(p|v) for VOCAL4-MP).

The voice assignment results are shown in Table 3.7, where it can be seen that

VOCAL4-VA outperforms the other models, suggesting that a language model is nec-

60 Chapter 3. Voice Separation

Model
Bach Chorales

Fva Fs Fa Ft Fb

Klapuri (2006) 28.12 (4.38) 24.23 (10.28) 22.98 (11.85) 29.35 (12.43) 35.92 (10.97)

Salamon and Gomez (2012) 24.83 (5.31) 30.03 (12.63) 25.24 (10.92) 21.09 (9.91) 22.95 (9.30)

Vincent et al. (2010) 18.30 (4.87) 13.43 (7.03) 15.52 (6.50) 17.14 (6.77) 27.10 (8.44)

Pertusa and Iñesta (2012) 44.05 (4.60) 40.18 (11.28) 43.34 (7.38) 41.54 (7.02) 50.56 (6.16)

Schramm and Benetos (2017) 20.31 (3.40) 20.42 (5.36) 21.27 (4.75) 14.49 (1.37) 25.05 (2.12)

VOCAL4-MP 21.84 (9.37) 12.99 (11.23) 10.27 (10.13) 22.72 (6.72) 41.37 (9.41)

VOCAL4-VA 56.49 (10.48) 52.37 (12.92) 49.13 (11.22) 53.10 (11.71) 71.38 (6.06)

Model
Barbershop Quartets

Fva Fs Fa Ft Fb

Klapuri (2006) 20.90 (5.79) 2.53 (4.82) 29.02 (13.25) 7.94 (7.48) 44.09 (14.26)

Salamon and Gomez (2012) 20.38 (6.61) 11.14 (10.27) 35.14 (14.04) 8.44 (8.22) 26.81 (13.69)

Vincent et al. (2010) 19.13 (8.52) 10.20 (8.25) 17.97 (9.03) 15.93 (8.85) 32.41 (12.41)

Pertusa and Iñesta (2012) 37.19 (8.62) 30.68 (13.94) 36.15 (11.70) 29.15 (13.90) 52.78 (10.37)

Schramm and Benetos (2017) 23.98 (4.34) 24.45 (6.36) 31.61 (6.79) 13.55 (2.18) 26.34 (2.03)

VOCAL4-MP 18.35 (7.56) 2.40 (5.54) 10.56 (13.92) 16.61 (7.31) 43.85 (3.46)

VOCAL4-VA 49.06 (14.65) 41.78 (18.78) 34.62 (16.29) 35.59 (16.93) 84.25 (6.58)

Table 3.7: Voice assignment results, where standard deviations are shown in parenthe-

ses. The post-processing refinement step described in Section 3.3.2.1.1 was also run

on the output of all cited methods. For those which do not output any voice assignment

information Klapuri (2006); Salamon and Gomez (2012); Vincent et al. (2010); Pertusa

and Iñesta (2012), the music language model was run once on its output with default

settings and M = 4. VOCAL4-MP represents our proposed method with the acoustic

model only. For VOCAL4-MP and Schramm and Benetos (2017), voice assignments

are derived from each model’s probabilistic voice assignment estimates (Pt(v|p) for

Schramm and Benetos (2017), and Pt(p|v) for VOCAL4-MP). VOCAL4-VA refers to our

fully integrated model.

essary for the task. It is also clear that integrating the language model as we have, rather

than simply including one as a post-processing step, leads to greatly improved perfor-

mance. Specifically, notice that the difference in performance between our model and

the baseline methods is much greater for voice separation than for multi-pitch detec-

tion, even though we applied our language model to those baseline methods’ results as

post-processing.

Also interesting to note is that our model performs significantly better on the bass

voice than on the other voices (p < .05). While this is also true of many of the baseline

methods, for none of them is the difference as great as with our model. Overtones are

3.3. From Audio 61

a major source of errors in our model, and the bass voice avoids these since it is almost

always the lowest voice.

A further investigation into our model’s performance can be found in Figure 3.13,

which shows all of the VOCAL4-VA model’s F-measures, averaged across all songs in

the corresponding dataset after each EM iteration. The first thing to notice is the large

jump in performance at iteration 15, when the language model is first integrated into the

process. This jump is most significant for voice assignment, but is also clear for multi-

pitch detection. The main source of the improvement in multi-pitch detection is that the

music language model helps to eliminate many false positive pitch detections using the

integrated pitch prior. In fact, the multi-pitch detection performance improves again

after the 16th iteration, and then remains relatively stable throughout the remaining

iterations.

The voice assignment results follow a similar pattern, though without the addi-

tional jump in performance after iteration 16. In the Bach Chorales, the voice sepa-

ration performance even continues to improve until the end of all 30 iterations. For

the Barbershop Quartets, however, the performance increases until iteration 20, before

decreasing slightly until the end of the process. This slight decrease in performance

over the final 10 iterations is due to the alto and soprano voices: Fb and Ft each remain

stable over the final 10 iterations, while Fa and Fs each decrease. This difference is

likely explained by the acoustic model not being able to properly decompose the alto

and soprano voices. The Barbershop Quartets have no true female voices (i.e., each

part is sung by a male vocalist), but the template dictionary’s contains only three voice

types with male vocalists; thus, at least one part, usually either alto or soprano, must

be estimated through a rough approximation of a spectral basis combination of female

voices. Such a rough approximation could be the cause of our model’s difficulty in

decomposing the alto and soprano voices in the Barbershop Quartets.

Figure 3.14 illustrates the output of our proposed system, run on excerpts from

both the Bach Chorale (a, left) and Barbershop Quartet (b, right) datasets, for the joint

multi-pitch detection and voice assignment tasks. Subfigures (a1) and (b1) show the

ground truth, using colour to denote vocal part; (a2) and (b2) show the probabilistic

pitch detections from the acoustic model after the 30th EM iteration, summed over all

voices (∑5
v=1 Pt(p|v)), where a darker shade of gray indicates a greater probability; (a3)

and (b3) present the final output of the integrated system, again using colour to denote

vocal part.

As mentioned earlier, the bass voice assignment outperforms all other voice assign-

62 Chapter 3. Voice Separation

5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

EM Iteration

F-
m

ea
su

re
Fmp Fva Fs Fa Ft Fb

(a) Bach Chorales.

5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

EM Iteration

F-
m

ea
su

re

Fmp Fva Fs Fa Ft Fb

(b) Barbershop Quartets.

Figure 3.13: The VOCAL4-VA model’s F-measures after each EM iteration, averaged

across all songs in each dataset. The large jump in performance at iteration 15 results

from the initial integration of the music language model.

3.3. From Audio 63

Excerpt from Bach Chorale dataset:

“If Thou but Suffer God to Guide Thee”
(J.S.Bach)

time(s)
103 104 105 106 107 108 109 110

pi
tc

h
-

m
id

i s
ca

le

10

20

30

40

50

60

(a1)

Excerpt from Barbershop Quartet dataset:

“It is a Long, Long Way to Tipperary”
(Jack Judge and Harry H. Williams)

time(s)
63 64 65 66 67

pi
tc

h
-

m
id

i s
ca

le

10

20

30

40

50

60

(b1)

time(s)
103 104 105 106 107 108 109 110

pi
tc

h
-

m
id

i s
ca

le

10

20

30

40

50

60

(a2)

time(s)
63 64 65 66 67

pi
tc

h
-

m
id

i s
ca

le

10

20

30

40

50

60

(b2)

time(s)
103 104 105 106 107 108 109 110

pi
tc

h
-

m
id

i s
ca

le

10

20

30

40

50

60

(a3)

time(s)
63 64 65 66 67

pi
tc

h
-

m
id

i s
ca

le

10

20

30

40

50

60

(b3)

Figure 3.14: Example system input and output of excerpts from the Bach Chorale (a,

left) and Barbershop Quartet (b, right) datasets. (a1) and (b1) show the ground truth, us-

ing colour to denote vocal part; (a2) and (b2) show the probabilistic pitch detections from

the acoustic model after the 30th EM iteration, summed over all voices (∑5
v=1 Pt(p|v)),

where a darker shade of gray indicates a greater probability; (a3) and (b3) present the

final output of the integrated system, again using colour to denote vocal part.

64 Chapter 3. Voice Separation

ments in almost all cases, since false positive pitch detections from the acoustic model

often correspond with overtones from lower notes that occur in the same pitch range

as the correct notes from higher voices. These overtone errors are most commonly

found in the soprano voice, for example at around 105 seconds in the Bach Chorale

excerpt and around 64.5 seconds in the Barbershop Quartet excerpt, where (a2) and

(b2) clearly show high probabilities for these overtones. It is clear from (a3) and (b3)

that such overtone errors in the soprano voice also lead to voice assignment errors in

the lower voices since our system can now assign the correct soprano pitch detections

to the alto voice, alto to tenor, and tenor to bass.

Another common source of errors (for both multi-pitch detection and voice assign-

ment) is vibrato. The acoustic model can have trouble detecting vibrato, and the music

language model prefers voices with constant pitch over voices alternating between two

pitches, leading to many off-by-one errors in pitch detection. Such errors are evident

throughout the Bach Chorale excerpt, particularly in the tenor voice towards the be-

ginning where our system detects mostly constant pitches (both in the acoustic model

output and the final output) while the ground truth contains some vibrato. Also, at the

end of both excerpts, there is vibrato present and our system simply detects no pitches

rather than the vibrato. This is most evident in the tenor voice of the Bach Chorale, but

is also evident in the soprano, alto, and tenor voices of the Barbershop Quartet.

A closer look at errors from both vibrato and overtones can be found in Figure 3.15,

which shows pitch detections (red) and ground truth (black) for the soprano voice from

an excerpt of “O Sacred Head Sore Wounded” from the Bach Chorales dataset. Here,

errors from overtones can be seen around 108.5 seconds, where the detected pitch 54

is the second partial from the tenor voice (not shown), which is at pitch 42 at that time.

Errors from vibrato are evident around 107.75 seconds and 108.6 seconds, where the

pitch detections remain at a constant pitch while the ground truth switches between

adjacent pitches.

3.3.3.4.1 20-cent Resolution To further investigate our model’s performance, es-

pecially on vibrato, we present its performance using 20-cent resolution instead of

semitone resolution. Specifically, we divide each semitone into five 20-cent wide fre-

quency bins. We convert our integrated model’s final semitone-based output into these

bins using a post-processing step: for each detected pitch, we assign it to the 20-cent

bin with the maximum Pt(f |p) value from the acoustic model’s final decomposition

iteration.

3.3. From Audio 65

time(s)
108 108.5 109

pi
tc

h
-

m
id

i s
ca

le
48

50

52

54

Figure 3.15: Pitch detections (red) and ground truth (black) for the soprano voice from

an excerpt of “O Sacred Head Sore Wounded” from the Bach Chorales dataset, show-

ing errors from both vibrato and overtones (from the tenor voice, not shown).

Results are reported in terms of a cent-based pitch tolerance. A tolerance of 0 cents

means that a pitch detection will only be evaluated as a true positive if it is in the correct

20-cent bin. A tolerance of ±20 cents means that a pitch detection will be evaluated

as a true positive if it is within one bin of the correct bin. In general, a tolerance of

±20k cents will count any pitch detection falling within k bins of the correct bin as a

true positive.

Figure 3.16 illustrates our model’s performance using different tolerance levels. In

general, our model’s semitone-based F-measures lie in between its F-measures when

evaluated 20-cent resolution at ±40-cent and ±60-cent tolerance. This does not sound

too surprising as a tolerance of±50 cents would approximate a semitone; however, we

would have expected our model’s performance with 20-cent resolution to be somewhat

better than its performance with semitone resolution, as it should reduce errors associ-

ated with vibrato that crosses a semitone boundary. This lack of improvement suggests

that our model’s difficulty in detecting vibrato is not due simply to semitone crossings,

but rather, may be a more fundamental issue of vibrato itself.

3.3.4 Conclusion

In this section, we have presented a system for multi-pitch detection and voice assign-

ment for a cappella recordings of multiple singers. It consists of two integrated com-

ponents: a PLCA-based acoustic model and an HMM-based music language model.

To our knowledge, this is the first system to be designed for the task.

We have evaluated our system on both multi-pitch detection and voice assignment

on two datasets: one of Bach Chorales, and another of Barbershop Quartets, and we

66 Chapter 3. Voice Separation

0 ±20 ±40 ±60 ±80 ±100
0

10

20

30

40

50

60

70

80

90

100

Tolerance (cents)

F-
m

ea
su

re
Fmp Fva Fs Fa Ft Fb

(a) Bach Chorales.

0 ±20 ±40 ±60 ±80 ±100
0

10

20

30

40

50

60

70

80

90

100

Tolerance (cents)

F-
m

ea
su

re

Fmp Fva Fs Fa Ft Fb

(b) Barbershop Quartets.

Figure 3.16: Our proposed model’s performance on each dataset using pitch tolerance

levels from 0 cents up to ±100 cents.

3.3. From Audio 67

achieve state-of-the-art performance on both datasets for each task. We have also

shown that integrating the music language model improves multi-pitch detection per-

formance compared to a simpler version of our system with only the acoustic model.

This suggests, as has been shown in previous work, that incorporating such music lan-

guage models into other acoustic MIR tasks might also be of some benefit, since they

can guide acoustic models using musicological principles.

For voice assignment, while our system performs well given the difficulty of the

task, there is certainly room for improvement. As overtones and vibrato constitute

the main sources of errors in our system, reducing such errors would lead to a great

improvement in the performance of our system. Thus, future work will concentrate on

methods to eliminate such errors, for example by post-processing steps which examine

more closely the spectral properties of detected pitches for overtone classification and

the presence of vibrato. Another possible improvement could be found during the

dynamic dictionary voice type assignment step. In particular, running a voice type

recognition process as a preprocessing step may result in better performance, and could

even eliminate the need for the music language model to be given the number of voices

a priori.

We will also investigate the use of incorporating additional information from the

acoustic model into the music language model to continue to improve performance.

In particular, we currently do not use either the singer subject probabilities Pt(s|p) or

the vowel probabilities Pt(o|p) at all, the values of which may contain useful voice

separation information. Similarly, incorporating harmonic information such as chord

and key information into the music language model could lead to a more informative

prior for the acoustic model during integration. Additionally, learning a new dictionary

for the acoustic model, for example an instrument dictionary, would allow our system

to be applied to different styles of music such as instrumentals or those containing both

instruments and vocals, and we intend to investigate the generality of our system in that

context.

Another possible avenue for future work is the adaptation of our system to work

on the note level rather than the frame level. The music language model was initially

designed to do so, but the acoustic model and the integration procedure will have to be

adapted as they are currently limited to working on a frame level. Such a note-based

system may also eliminate the need for robust vibrato detection, as a pitch with vibrato

would then correctly be classified as a single note at a single pitch. An additional ben-

efit to adapting our system to work on the note level would be the ability to incorporate

68 Chapter 3. Voice Separation

metrical or rhythmic information into the music language model.

3.4 Conclusion

This chapter has presented two new models for voice separation, the division of the

notes of a musical performance into streams called voices, and voice assignment,

which additionally assigns a label to each voice representing the instrument or part

to which those notes belong.

First, in Section 3.2, we have presented an HMM for performing voice separation

on MIDI data. We have shown that the proposed model, in addition to being one of only

a very few models which can be run on live performance data directly, outperforms

baseline methods on multiple corpora of Bach and Haydn compositions, achieving

state-of-the-art results on both metronomic and live performance MIDI data as input.

It also requires as input only only note onset time, offset time, and pitch; no metrical,

harmonic, or other information (such as a maximum number of voices) is required as it

is for many other approaches. Additionally, the incrementality of the model allows for

it to be used in any number of real-time applications, as it can begin processing before

the end of a performance is reached.

In Section 3.3, we have presented a system for multi-pitch detection and voice

assignment of a cappella recordings, integrating an acoustic model based on PLCA

with a music language model in the form of a modified version of the voice separa-

tion HMM. Although ours is the first system designed directly for the task, we have

compared it against systems comprised of existing multi-pitch detection models with

the modified version of the voice separation HMM run as a post-processing step. The

experiments show that our system outperforms all other systems, achieving state-of-

the-art results on both a corpus of Bach Chorales and another of Barbershop Quartets.

From a computational standpoint, voice separation is commonly used for the pre-

processing of data into easier to handle monophonic streams of notes, particularly in

the case of MIDI input. In fact, in prior work, voice separation has almost exclusively

been addressed in a MIDI setting. To that end, our voice separation model has of-

fered significant improvements over existing approaches in (1) performance, where we

achieve state-of-the-art accuracy; (2) the amount of data required as input, where our

model eliminates the need for any a priori metrical alignment, harmonic information,

or voice count; and (3) its applicability to live performance, where our model has been

designed to work directly on live performance, even in real time due to its incremen-

3.4. Conclusion 69

tality.

We have also shown that voice separation has more value than its use simply as a

preprocessing step for other tasks. Our joint multi-pitch detection and voice separation

system has clearly demonstrated that integrating an acoustic model with our voice

separation model significantly improves multi-pitch detection performance compared

to using the acoustic model by itself. This proves that a voice separation model can be

used as a successful music language model for acoustic MIR tasks.

There is still definite room for improvement on both of our models, however. For

example, combining the HMM with a model of rhythmic or metrical structure and

running the two jointly could eliminate many of the errors which our model currently

makes. This would lead to improved performance on both MIDI voice separation and

audio voice assignment (although that would require the additional step of having the

acoustic model generate notes instead of frame-based pitch detections).

Chapter 4

Metrical Analysis

This chapter discusses the metrical analysis of music data, which is, in simplest terms,

the detection of the underlying metrical structure of a piece of music. Metrical analysis

should play a major role in any music language model, allowing the model to interpret

a stream of notes as structured, with stressed and unstressed notes, rather than treating

each note as equally important. Such an analysis, in particular aligning a performance

with a metrical structure, is a necessary component of any complete transcription sys-

tem, since the time signature, bar lines, and note values all rely directly on this metrical

alignment.

Section 4.3 proposes a lexicalised probabilistic context-free grammar (LPCFG) de-

signed for the task of meter detection and alignment from metronomic MIDI data. That

the LPCFG is successfully able to detect metrical structures in music again suggests

some underlying similarity between language and music, since LPCFGs have been

used successfully in various parsing tasks in NLP. In order for the grammar to be run

on live performance data, it must be combined with some beat tracking model. Such

a beat tracking model is presented in Section 4.4 in the form of an HMM which runs

jointly with the LPCFG to perform metrical structure detection and alignment on live

performance data, requiring as input only note onset and offset times. This joint HMM

and LPCFG follows all of our constraints for a music language model from Chapter 2,

being probabilistic, incremental, using no a priori information, and being able to run

on live performance data.

This chapter is based on the published works “Meter detection in symbolic music

using a lexicalized PCFG” (McLeod & Steedman, 2017) and “Meter detection and

alignment of MIDI performance” (McLeod & Steedman, 2018b).

71

72 Chapter 4. Metrical Analysis

‰

♩

� �

♩

� �

♩

� �

Figure 4.1: The metrical structure of a 3
4 bar.

4.1 Introduction

The metrical structure of a piece of music can be represented by a tree in which each

node represents a single note vale. In common-practice Western music (the subject of

our work), the children of each node in the tree divide its duration into some number of

equal-length notes (usually two or three) such that every node at a given depth has an

equal value. For example, the metrical structure of a single 3
4 bar, down to the quaver

(eighth note) level, is shown in Figure 4.1. Each level of a metrical tree corresponds

with an isochronous pulse in the underlying music: bar, beat, and sub beat (from top

to bottom). There are theoretically more divisions further down the tree, but as these

three levels are enough to unambiguously identify the time signature of a piece, we

do not consider any lower. Meter detection refers to the identification of the structure

of this tree, while alignment necessitates the additional step of aligning a sequence of

trees with the underlying musical performance so that the root of each tree corresponds

to a single bar.

Meter detection and alignment are integral components of AMT, particularly when

trying to identify the time signature of a given performance, since there is a one-to-one

relationship between time signatures and metrical structures. In music, each successive

bar may have a different metrical structure than the preceding one; however, such

changes in structure are not currently handled by our model, and are left for future

work. Our grammar can only be applied to pieces in which each bar is of equal length,

has the same number of equal-length beats, and each beat has the same number of

equal-length sub beats. That is, it can be applied to any piece where the metrical tree

structure under each node at a given level of the tree is identical. In this work, we

evaluate our grammar only on the simple and compound meter types 2
X, 3

X, 4
X, 6

X, 9
X, and

12
X (where X may take any value), and leave more uncommon and irregular meters for

future work. Those interested in asymmetric meter detection should refer to Fouloulis,

Pikrakis, and Cambouropoulos (2013).

4.2. Existing Work 73

We discuss existing work on meter detection and alignment in Section 4.2. In Sec-

tion 4.3, we introduce and evaluate our grammar, which is able to perform metrical

structure detection and alignment on metronomic data, and in Section 4.4, we incorpo-

rate this grammar into an HMM which is able to perform metrical structure detection

and alignment on live performance data.

4.2 Existing Work

Most of the early work in the fields of meter detection and alignment involved rule-

based, perceptual models. Longuet-Higgins and Steedman (1971) present a model

which runs on monophonic metronomic data and uses only note durations, which was

later extended by Steedman (1977) to incorporate melodic repetition. Both models

were evaluated on full metrical structure detection on the fugues from Bach’s Well-

Tempered Clavier (WTC). Longuet-Higgins and Lee (1982) describe a somewhat sim-

ilar model, also to be run on monophonic metronomic data, though only a few quali-

tative examples are presented in evaluation, and the model is unable to handle synco-

pation. Spiro (2002) proposes a rule-based, incremental model for metronomic data,

combined with a probabilistic n-gram model of bar-length rhythmic patterns, and eval-

uated on metrical structure detection and alignment on a small corpus of 16 mono-

phonic string compositions by Bach. This remains one of the only successful models

for meter detection to use a grammar thus far, though similar grammars have been

used for rhythmic and tempo analysis where the meter is given (Takeda, Nishimoto,

& Sagayama, 2004, 2007; Nakamura, Yoshii, & Sagayama, 2016). While these rule-

based methods show promise, and we base some of our model’s principles on them, a

more flexible probabilistic model is preferred.

Brown (1993) proposes using auto-correlation for meter detection, in which a

promising, though limited, evaluation on meter type and sub beat length detection

was shown for 17 metronomic pieces. Meudic (2002) later describes a similar model

also using auto-correlation on metronomic MIDI data for the same task. Eck and

Casagrande (2005) extend this further, and were the first to use auto-correlation to

also perform metrical alignment (though alignment results are limited to synthetic

rhythms). They were also the first to do some sort of corpus-based evaluation, though

only to classify the meter of a piece as duple or compound. Though auto-correlation

has performed well for partial metrical structure detection, there is still a question

about whether it can perform metrical alignment, and no work that we have found has

74 Chapter 4. Metrical Analysis

yet done so successfully for non-synthetic MIDI data.

Inner metric analysis (IMA) was first proposed for music analysis by Volk (2008),

though only as a method to analyse the rhythmic stress of a piece, not to detect the

meter of that piece. It requires metronomic MIDI with labelled beats as input, and it

involves identifying periodic beats which align with note onsets. Thus, detecting and

aligning metrical structure using IMA is a matter of classifying the correct beats as

downbeats. It is used by De Haas and Volk (2016), along with some post-processing, to

perform meter detection on metronomic MIDI data probabilistically. We were unable

to run their model on our data, though they evaluate the model on two datasets, testing

both duple or triple classification as well as full metrical structure detection (including

phase). However, as the datasets they used are quite homogeneous—95% of the songs

in the FMPop corpus are in 4
4, and 92% of the songs in the RAG corpus (Volk & de

Haas, 2013) are in either 2
4 or 4

4 time—we have decided not to include a comparison in

this work.

Whiteley, Cemgil, and Godsill (2006) perform metrical structure detection and

alignment probabilistically from live performance data by jointly modeling tempo,

meter, and rhythm; however, the evaluation was very brief, only testing the model

on 3 bars of a single Beatles piano performance, and the idea was not used further on

MIDI data to our knowledge. Temperley (2007) proposes a Bayesian model for met-

rical structure detection and alignment of monophonic live performance MIDI data.

The general idea is to model the probability of a note onset occurring given the current

level of the metrical tree at any time with Bayes’ rule. This is combined with a simple

Bayesian model of tempo changes, giving a model which can detect and align the full

metrical structure of a performance. Temperley (2009) extends this model to work on

polyphonic data, combining it into a joint model with a Bayesian voice separator and

a Bayesian model of harmony. This joint model performs well on metrical structure

detection and alignment on a corpus of piano excerpts, and we compare against it in

our work in Section 4.4.

4.3 Tatum-aligned Data

This section proposes a lexicalised probabilistic context-free grammar (LPCFG) de-

signed for meter detection and alignment of metronomic data, an integral component

of AMT. The grammar uses rhythmic cues to align a given musical piece with learned

metrical stress patterns. Lexicalisation breaks the standard probabilistic context-free

4.3. Tatum-aligned Data 75

grammar (PCFG) assumption of independence of production, and thus, the grammar

can model the more complex rhythmic dependencies which are present in musical

compositions. Using a novel metric proposed for the task, we show that the gram-

mar outperforms baseline methods when run on metronomic data. The code for the

grammar is available at https://github.com/apmcleod/met-detection.

Specifically, our grammar is designed to be run on metronomic MIDI music data,

and we present an evaluation where the tatum—the fastest subdivision of the beat

(we use demisemiquavers, or 32nd notes, although the grammar does not know which

specific level is used)—is given. Thus, the task that our grammar solves is one of

detecting and aligning the correct full metrical structure, composed of: (1) meter type

(the number of beats per bar and the number of sub beats per beat), (2) phase (the

number of tatums which fall before the first full bar), and (3) sub beat length (the

number of tatums which lie within a single sub beat).

4.3.1 Proposed Method

For our proposed method, we were careful to make as few assumptions as possible so

it can be applied to different styles of music directly (assuming enough training data

is available). It is based on a standard PCFG (presented in Section 4.3.1.1) with added

lexicalisation as introduced in Section 4.3.1.2. The inference procedure is described in

Section 4.3.1.3.

The basic idea of the grammar is to detect patterns of rhythmic stress in a given

piece of music with the grammar, and then to measure how well those stress patterns

align with learned metrical stress patterns. We use note length to measure rhythmic

stress in this work, assuming that long notes will be heard as stressed. This assumption

is based on ideas from many of the rule-based methods presented above, and works

well. However, there are many other factors of musical stress that our grammar does

not capture, such as melody and harmony, which have been found to be helpful for

meter detection (Toiviainen & Eerola, 2006), that are left for future work.

4.3.1.1 PCFG

The context-free grammar rules shown in Figure 4.2 is used to construct a rhythmic

tree quite similar to the metrical tree from Figure 4.1 above. Each bar of a given

piece is first assigned the start symbol S, which can be rewritten as the non-terminal

Mb,s (representing the meter type), where b is the number of beats per bar and s is the

76 Chapter 4. Metrical Analysis

S →Mb,s

Mb,s→ Bs . . . Bs (b times)

Bs → SB . . . SB (s times) | r
SB → r

Figure 4.2: The grammar rules which form the basis of the PCFG. The subscript b is

the number of beats per bar, while s is the number of sub beats per beat. The terminal

symbol r can refer to any rhythmic pattern.

S

M2,3

B3

ˇ “‰

B3

SB

ˇ “(

SB

ˇ “(

SB

ˇ “(

Figure 4.3: An example of the rhythmic tree of a 6
8 bar with the rhythm ˇ “‰ ˇ “ ˇ “== ˇ “==.

number of sub beats per beat (2 for simple meters and 3 for compound meters). For

example, M4,2 represents a meter in 4
4 time, and M2,3 represents a meter in 6

8 time.

A non-terminal Mb,s is rewritten as b beat non-terminals Bs. Each beat non-terminal

Bs can be rewritten either as s sub beat non-terminals SB or as the terminal r, repre-

senting the rhythm of the notes and rests present within that beat. A beat may only be

rewritten as r if it contains either (1) no notes or (2) a single note which lasts at least

the entire duration of the node (the note may begin before the beat, end after the beat,

or both). A sub beat SB must be rewritten as a terminal r, representing the rhythm of

the notes and rests present within that sub beat.

An example of the rhythmic tree of a single 6
8 bar with the rhythm ˇ “‰ ˇ “ ˇ “== ˇ “== is shown

in Figure 4.3. Here, the first beat is been rewritten as a terminal since it is the only note

present.

4.3. Tatum-aligned Data 77

4.3.1.2 Lexicalisation

One downside of using a PCFG to model the rhythmic structure is that PCFGs make a

strong independence assumption that is as inappropriate for music as it is for language.

Specifically, in a given rhythm, a note can only be heard as stressed or important in

contrast with the notes around it, though a standard PCFG cannot model this. A PCFG

may see a dotted quarter note and assume that it is a long note, even though it has no

way of knowing whether the surrounding notes are shorter or longer, and thus, whether

the note should indeed be considered stressed.

To solve this problem, we implement an LPCFG, where each pre-terminal node is

assigned a head corresponding to the note beneath it with the longest duration. Strong

heads (in this work, those representing longer notes) propagate upwards through the

metrical tree to the other non-terminals in a process we call lexicalisation by analogy

with lexical head dependency models in NLP. This allows the grammar to model rhyth-

mic dependencies rather than assuming independence as in a standard PCFG, and the

pattern of strong and weak beats and sub beats is used to determine the underlying

rhythmic stress pattern of a given piece of music.

This head is written (d;s), where d is the duration of the longest note (or, the

portion of that note which lies beneath the node), and s is the starting position of that

note. When two notes are of equal duration, the one with the earliest starting position

is chosen as most important. The character ‘t’ is added to the end of s if that note is

tied into (i.e. if the onset of the note lies under some previous node). In the heads,

d and s are normalised so that the duration of the node itself is 1. Thus, only heads

which are assigned to nodes at the same depth can be compared directly. A node with

no notes is assigned the empty head of (0;0).

Once node heads have been assigned, each beat and sub beat non-terminal is as-

signed a strength of either strong (S), weak (W), or even (E). These are assigned by

comparing the heads of siblings in the rhythmic tree. If all siblings’ heads are equal,

they are assigned even strength. Otherwise, those siblings with the strongest head are

assigned strong strength while all others are assigned weak strength, regardless of their

relative head strengths.

Head strength is determined by a ranking system, where heads are first ranked by

d such that longer notes are considered stronger. Any ties are broken by s such that

an earlier starting position corresponds to greater strength. Any further ties are broken

such that notes which are not tied into are considered stronger than those which are.

78 Chapter 4. Metrical Analysis

S(1
2 ;0)

M2,3(
1
2 ;0)

B3,S(1;0)

ˇ “‰

B3,W (1
3 ;0)

SBE(1;0)

ˇ “(

SBE(1;0)

ˇ “(

SBE(1;0)

ˇ “(

Figure 4.4: An example of the rhythmic tree of a 6
8 bar with the rhythm ˇ “‰ ˇ “ ˇ “== ˇ “== including

strengths and lexicalisation.

An example of the rhythmic tree of a single 6
8 bar with the rhythm ˇ “‰ ˇ “ ˇ “

== ˇ “== including

strengths and lexicalisation is shown in Figure 4.4. To create this tree, we first take the

basic PCFG-generated tree from Figure 4.3 and add heads to each non-terminal node,

starting from the bottom. Since the first sub beat contains only one note, and that note’s

duration is the full sub beat, it is assigned a head of (1;0). The other two sub beats are

likewise also assigned a head of (1;0). Moving upwards to the beat level, the first beat

is also assigned a head of (1;0). (Remember that each head is normalised so that the

duration of the node itself is always 1.) The second beat, however, is assigned a shorter

head of (1
3 ;0). The most important note beneath the second beat is the eighth note in

its first sub beat (because notes of equal duration are ranked based on their starting

position). At the bar level, the head of (1
2 ;0) is chosen based on the dotted quarter note

in the first beat, and likewise for the head of (1
2 ;0) at the start symbol. Next, strengths

are assigned to each sub beat and beat non-terminal. The heads of each of the sub beats

in the second beat are equal, and thus they are all assigned even strength (E). At the

beat level, the first beat has a stronger head, and thus the first beat is assigned strong

strength (S) while the second beat is assigned weak strength (W).

Certainly the LPCFG does have an advantage over the PCFG in that it has the

ability to draw from the wider context of the entire bar when aligning a piece with a

metrical structure. However, it is not clear precisely in which cases this context adds

value. For example, one might imagine an even more naive model which simply tries

to align longer notes with nodes higher up in the metrical tree. This idea is, in fact,

very similar to the the main principle behind IMA, mentioned earlier (De Haas & Volk,

4.3. Tatum-aligned Data 79

SBS SBW SBE SBE SBW SBS

BS 20.77% 74.08% 5.15%

BE 10.68% 87.92% 1.40%

BW 17.61% 44.62% 37.77%

Table 4.1: The LPCFG’s learned probabilities for every possible beat to sub beat transi-

tion in the context of a 4
4 bar. The first column lists each possible beat non-terminal while

the remaining columns show the probability of every possible sub beat combination.

2016), and in general, it is a good one. However, there are indeed cases in which the

wider context offers insight.

To highlight one specific example, we investigate the beat to sub beat transition

in the context of a 4
4 bar. All possible such transitions are listed in Table 4.1, along

with their probabilities, and from the differing probability distributions in each row,

it quickly becomes clear why the LPCFG’s additional context is helpful. The first

column lists each possible beat non-terminal while the remaining columns show the

probability of every possible sub beat combination. Notably, a weak beat (bottom row)

is significantly more likely than either an even or a strong beat to transition into a weak

sub beat followed by a strong sub beat (rightmost column). Furthermore, and even a

bit counter-intuitively, a weak beat is more likely to transition into a weak sub beat

followed by a strong sub beat than it is to transition into a strong sub beat followed by

a weak sub beat. Therefore, the LPCFG has learned that, in the context of a weak beat,

a long note is actually more likely to occur at the sub beat level than higher up in the

metrical tree. Only by using its wider context, and seeing that even longer notes exist

elsewhere in the bar, is the LPCFG able to learn such a fact, and it is precisely in cases

like this that its context adds value.

4.3.1.3 Performing Inference

Each of the LPCFG rule probabilities are computed as suggested by Jurafsky and Mar-

tin (2000), plus additionally conditioning each on the meter type. For example, the

replacement {M2,3(
1
2 ;0)→ B3,S(1;0) B3,W (1

3 ;0)} is modelled by the product of Equa-

tions (4.1), (4.2), and (4.3). Equation (4.1) models the probability of a transition given

the left-hand-side node’s head, while Equations (4.2) and (4.3) model the probability

of each child’s head given its type and the parent’s head.

80 Chapter 4. Metrical Analysis

P(M2,3→ B3,S B3,W |M2,3,(1/2;0)) (4.1)

P((1;0) |M2,3,B3,S,(1/2;0)) (4.2)

P((1/3;0) |M2,3,B3,W ,(1/2;0)) (4.3)

The meter type conditioning ensures that the model not prefer one meter type over

another based on uneven training data. Specifically, each initial transition S→ Mb,s

is assigned a probability of 1. The actual probability values are computed given a

training corpus using maximum likelihood estimation with Good-Turing smoothing

as described by Good (1953). If a given replacement’s head, as modelled by Equa-

tions (4.2) and (4.3), is not seen in the training data, we use a backing-off technique as

follows. We multiply the probability from the Good-Turing smoothing by a new proba-

bility equation, where the meter type is removed (again with Good-Turing smoothing).

This allows the grammar to model, for example, the beat-level transitions of a 9
8 bar

using the beat-level transitions of a 3
4 bar. Note that this does not allow any cross-level

calculations where, for example, the beat level of a 9
8 bar could be modelled by the sub

beat level of a 6
8 bar, though this could be a possible avenue for future work.

The grammar was designed to be used on monophonic melodies, so we use the

voices as annotated in the data. Afterwards, only rhythmic information is needed.

That is, the grammar uses onset and offset times for each note, and no pitch or velocity

information.

The first step in the inference process is to create multiple hypothesis states, each

with probability 1, and each corresponding to a different (meter type, sub beat length,

phase) triplet, which are treated as latent variables. Meter type corresponds to the spe-

cific Mb,s which will be used throughout the piece for that hypothesis (there is currently

a constraint that pieces do not change time signature during a piece). Sub beat length

corresponds to the length of a sub beat of that hypothesis state. This differentiates 2
4

time from 2
2 time, for example. Phase refers to how long of an anacrusis a hypothesis

will model. That is, how many tatums lie before the first downbeat.

Each state’s rhythmic trees are built deterministically, one per voice per bar while

that voice is active, throwing out any anacrusis bars. A state’s final probability is the

product of the probabilities of each of the trees of each of its voices. Specifically, re-

peating metrical trees are aligned with each ground truth voice with the constraint that

these trees match perfectly in meter type, sub beat length, and phase across different

voices of the same piece. Each tree is then assigned a probability based on the learned

4.3. Tatum-aligned Data 81

grammar’s probabilities, and the product of all of these probabilities is taken as the fi-

nal probability of a particular (meter type, sub beat length, phase) triplet. After parsing

a full piece, the states are ordered by probability and the metrical structure correspond-

ing to the most likely state’s (meter type, sub beat length, phase) triplet is picked as the

model’s resulting metrical alignment.

4.3.1.3.1 Rule of Congruence One final optimisation is made, related to the “rule

of congruence” as noted by Longuet-Higgins and Steedman (1971), and further de-

scribed perceptually by C. Lee (1991). That is, with few exceptions, a composer (at

least of classical music), will not syncopate the rhythm before a meter has been estab-

lished. This means that if the meter has not yet been established, and the underlying

rhythm does not match with the metrical structure of a hypothesis state based on its

(meter type, sub beat length, phase) triplet, we should be able to remove it. In practice,

we allow up to 5 mismatches before eliminating a metrical hypothesis state. In tests,

setting this value to anything from 2 to 20 makes no difference in performance; how-

ever, the lower the value, the faster the program becomes (and the less room for error

there is in the case of a particularly adventurous composer).

A metrical structure hypothesis begins as unmatched, and is considered to be fully

matched if and only if both its beat and sub beat levels have been matched. The follow-

ing paragraphs detail the procedure for the matching of a metrical structure hypothesis

given each of the four possible states: fully matched, sub beat matched, beat matched,

or unmatched.

If a hypothesis is unmatched, a note which is shorter than a sub beat and does not

divide a sub beat evenly is counted as a mismatch. A note which is exactly a sub beat

in length is either counted as a mismatch (if it is not in phase with the sub beat), or

the hypothesis is moved into the sub beat matched state (otherwise). A note which

is between a sub beat and a beat in length is counted as a mismatch. A note which

is exactly a beat in length is either counted as a mismatch (if it is not in phase with

the beat), or the hypothesis is moved into the beat matched state (otherwise). A note

which is longer than a beat, is not some whole multiple of a beat in length, and does

not divide a bar evenly is counted as a mismatch.

If a hypothesis is sub beat matched, it now interprets each incoming note based on

that sub beat length. That is, any note which is longer than a single sub beat is divided

into up to three separate notes (for meter matching purposes only): (1) The part of the

note which lies before the first sub beat boundary which it overlaps (if the note begins

82 Chapter 4. Metrical Analysis

exactly on a sub beat, no division occurs); (2) The part of the note which lies after the

final sub beat boundary which it overlaps (if the note ends exactly on a sub beat, no

division occurs); and (3) the rest of the note. After this processing, a note which is

longer than a sub beat and shorter than a beat is counted as a mismatch. (Due to note

division, this only occurs if the note is two sub beats in length and each beat has three

sub beats.) A note which is exactly a beat in length moves the hypothesis into the fully

matched state. A note which is longer than a beat and is not some whole multiple of

beats is counted as a mismatch.

If a hypothesis is beat matched, it now interprets each incoming note based on that

beat length exactly as is described for sub beat length in the previous paragraph. After

this processing, a note which is shorter than a sub beat and does not divide a sub beat

evenly is counted as a mismatch. A note which is exactly a sub beat in length is either

counted as a mismatch (if it is not in phase with the sub beat), or the hypothesis is

moved into the fully matched state (otherwise). A note which is longer than a sub beat

and shorter than a beat, and which does not align with the beginning or end of a beat,

is counted as a mismatch.

Once a metrical hypothesis is fully matched, incoming notes are no longer checked

for matching, and the hypothesis will never be removed.

4.3.2 Evaluation

4.3.2.1 Metric

To evaluate our method, instead of just checking whether the top hypothesis’ metrical

structure is fully correct and properly aligned or not, we want some measure of partial

correctness. For instance, if the correct time signature is 4
4, a guess of 2

4 should achieve

a higher score than a guess of 6
8. With that in mind, we propose the following metric.

For each of the three levels of the guessed metrical structure, an exact match with

a level of the correct metrical structure is counted as a true positive, while a clash—

when all of the nodes in a level of the guessed structure cannot be made by some

integer multiple or division of nodes from each of the levels of the correct structure—

is counted as a false positive. After all three levels have been tested, each of the correct

metrical structure’s levels which were not matched count as a false negative. Precision,

recall, and F-measure can all be computed based on the resulting true positive, false

positive, and false negative totals.

Examples of this metric are illustrated in Figure 4.5. Given a correct time signature

4.3. Tatum-aligned Data 83

�

♩

� �

♩

� �

♩

� �

♩

� �

♩

� �

♩

� �

?

X

X

‰

♩‰

� � �

♩‰

� � �

X

X

X

Figure 4.5: Top: The metrical structure of a 4
4 bar. If 4

4 is the correct time signature, a

guess of 2
4 with the correct phase (bottom-left) would give P = 1.0, R = 0.67, and F-

measure = 0.8. A guess of 6
8 with the correct phase (bottom-right) would give P = 0.33,

R = 0.33, and F-measure = 0.33.

of 4
4, and assuming that the phase of the guessed metrical structure is correct,1 if the

guessed time signature is 2
4, there are only 2 true positives; however, the bar level

grouping for 2
4 does not clash with the metrical structure of 4

4, so it is not counted as a

false positive. There is, however, 1 false negative from the bar level of the 4
4, giving

values of P = 1.0, R = 0.67, and F-measure = 0.8. If 6
8 is guessed instead, the sub

beat level again matches, giving 1 true positive. However, both the beat level and the

bar level clash (since 1.5 beats of a 4
4 bar make a single 6

8 beat, and 3
4 of a 4

4 bar gives

a 6
8 bar), giving 2 false positives and 2 false negatives. This gives values of P = 0.33,

R = 0.33, and F-measure = 0.33. Much lower, and rightfully so.

For evaluation on a full corpus, true positives, false positives, and false nega-

tives are summed throughout the entire corpus to get a global precision, recall, and

F-measure. Statistical significance is calculating using a two-tailed t-test.

4.3.2.2 Data

We report our results on two corpora: (1) the 15 Bach Inventions, consisting of 1126

monophonic bars (in which a single bar with two voices counts as two bars), and (2)

the much larger set of 48 fugues from the Well-Tempered Clavier (WTC), containing

8835 monophonic bars. These two corpora contain metronomic MIDI files, hand-

1An incorrect phase will result in a significantly lower score in all cases presented here.

84 Chapter 4. Metrical Analysis

Method Inventions Fugues
4
4 0.58 0.45

PCFG 0.61 0.63

LPCFG 0.63 0.80

Table 4.2: The F-measure of each method for each corpus.

aligned with a demisemiquaver (32nd note) tatum. The notes in each file are split into

voices as marked in the corresponding scores.

We use leave-one-out cross-validation within each corpus for learning the proba-

bilities of the grammar. That is, for testing each song in a corpus, we train our grammar

on all of the other songs within that corpus. We also tried using cross-validation across

corpora by training on the inventions when testing the fugues and vice versa; how-

ever, that led to similar but slightly worse results, as the complexities of the rhythms

in the corpora are not quite similar enough to allow for such training to be successful.

Specifically, there is much more syncopation in the fugues than in the inventions, and

thus our grammar would tend to prefer to incorrectly choose meters for the inventions

which would result in some syncopation.

4.3.2.3 Results

Our LPCFG is evaluated against two baselines. First, a naive one, guessing 4
4 time with

an anacrusis such that the first full bar begins at the onset of the first note (the most

common time signature in each corpus). Second, the PCFG without lexicalisation

(as proposed in Section 4.3.1.1, with Good-Turing smoothing and rule of congruence

matching). Results are found in Table 4.2, where it can be seen that the LPCFG outper-

forms all baselines, significantly on the larger fugue corpus (p< 0.05). The differences

on the smaller inventions corpus are not statistically significant.

It is surprising that the LPCFG does not perform better on the inventions, which

are simpler compositions than the fugues. The reason for this lack of improvement

seems to be a simple lack of training data, as can be seen in Table 4.3, which shows

that as the number of training pieces for each meter type increases, the performance of

the LPCFG improves dramatically, showing that more training data in the style of the

inventions should continue to improve its performance on that corpus.

Figure 4.6 shows the percentage of pieces in each corpus for which each method

achieves 3, 2, 1, or 0 true positives (TPs), and further details exactly what is happening

4.3. Tatum-aligned Data 85

Meter Inventions Fugues

Type # LPCFG # LPCFG
6
X 0 — 4 0.58
3
X 5 0.60 7 0.57
2
X 0 — 9 0.89
4
X 8 0.71 26 0.90

All 15 0.63 48 0.80

Table 4.3: The F-measure of the LPCFG split by meter type. Here, # represents the

number of pieces in each meter type, and meter types which occur only once in a

corpus are omitted.

on the inventions. The true positive counts correspond with those in our metric, and

represent the number of levels of the metrical tree (bar, sub beat, beat) which were

matched in both length and phase for each piece. Thus, more true positives corresponds

with a more accurate guess.

The improvement on the fugues is clear for the LPCFG. On the inventions, how-

ever, the naive 4
4 model gets 40% of the metrical structures of the inventions exactly

correct (3 TPs), while the LPCFG gets only 26.67%. However, the LPCFG gets many

more of its guesses mostly or exactly correct (with 2 or 3 TPs), and eliminates fully

incorrect guesses (0 TPs) completely. This shows that, even though it may not have

had enough data yet to detect and align full metrical structures correctly, it does seem

to be learning some sort of structural patterns from what limited data it has.

A specific case where increased training data would benefit the LPCFG is in the

15th fugue from WTC book I, the first bar of which is shown in Figure 4.7. This

rhythmic pattern is found throughout the piece, and is a strong indication of a 6
8 bar,

consisting of two even beats, each split into a sub beat pattern of strong, weak, weak.

However, our grammar guesses that this piece is in 4
4 time simply because it has not seen

the transition {B3,E → SBS SBW SBW} in a 6
X meter type in training. This is indicative

of the errors we see throughout the data, showing again that with more training data

the results will only improve.

86 Chapter 4. Metrical Analysis

4 4

PCFG

LPCFG4 4

PCFG

LPCFG

0

20

40

60

80

100
%

of
Pi

ec
es

0 TPs
1 TP
2 TPs
3 TPs

Inventions Fugues

Figure 4.6: The percentage of pieces in each corpus for which each method’s metrical

structure guess resulted in the given number of true positives.

Figure 4.7: The first bar of 15th fugue from WTC book I by Bach (BWV 860).

4.4. With Beat Tracking 87

4.4 With Beat Tracking

In this section, we present an HMM for the metrical alignment of live performance

MIDI data. The model needs as input only a list of the notes present in a performance,

and detects the underlying metrical structure of the piece, labelling bars, beats, and sub

beats in time. We also present an incremental algorithm which can perform inference

on the model efficiently. Using a new metric proposed for the task, we show that our

model achieves state-of-the-art results on a corpus of metronomic MIDI data, as well

as a second corpus of live performance MIDI data. The code for the model described

in this section is available at https://www.github.com/apmcleod/met-align.

4.4.1 Proposed Model

The proposed beat tracking model tracks pulses at the tatum level (the fastest subdivi-

sion of the beat) of a musical performance based on two musicological principles: (1)

the rate of these tatums should be relatively constant without large discontinuities; and

(2) notes should lie relatively close to these tatums.

Our model is an HMM where the observed data is the notes of a given piece,

grouped into sets. Section 4.4.1.1 describes our model’s state space, while Sections

4.4.1.2 and 4.4.1.3 detail its emission and transition functions respectively. Section

4.4.1.4 describes implementation details and additional optimisation procedures used

to reduce the search space of the model, as well as to allow it to be more robust in

regards to the idiosyncrasies of live performance. An example of our model being run

on a sample input is shown and explained in Section 4.4.1.5.

4.4.1.1 State Space

Each state S in our model represents a single bar, containing (1) a list of the tatums

from that bar and (2) a metrical hierarchy, describing which of those tatums are beats

and sub beats. The list of tatums is represented by S.t, where S.ti is the ith tatum in the

bar, and S.t|S.t| is the downbeat of the following bar. The tatums are in increasing time

order, where Time(S.ti) represents the time of tatum S.ti. A state’s metrical hierarchy

has some number of tatums per sub beat, sub beats per beat, and beats per bar, as well

as an anacrusis length, measured by the number of tatums which fall before the first

downbeat of a given piece. In our model, we restrict the number of tatums per sub beat

to be 4, although in theory, any number could be used. We also restrict the anacrusis

88 Chapter 4. Metrical Analysis

length to be some integer multiple of the number of tatums per sub beat, a simplifying

assumption that ensures the first note of each piece will fall on a sub beat. The set of

possible sub beat per beat and beat per bar pairs (i.e., time signatures) are taken from

the LPCFG described in Section 4.3. A state’s tempo, Tempo(S), is defined as the

average length of a beat from its most recent bar.

Each possible initial state S0 contains no tatums (|S0.t| = 0), and every possi-

ble metrical hierarchy is considered equally probable. To reduce our model’s search

space, we place a restriction on the range of allowed values for Tempo(S1): tmin ≤
Tempo(S1) ≤ tmax. Nonetheless, because the possible tatum times for each state are

unbounded, our model contains an infinite number of possible states. Thus, instead

of predefined emission and transition probabilities, we define emission and transition

functions, presented in the following sections.

4.4.1.2 Emission Function

After the initial state (which emits nothing), each state Si emits a set of notes Ni, con-

taining only notes whose onset times lie between that state’s first (inclusive) and last

(exclusive) tatum. This set is allowed to be empty. Each emitted note has an onset time

On(n), an offset time Off(n), a pitch Pitch(n), and a voice Voice(n).

The probability of a state Si to emit the note set Ni is presented as P(Ni|Si) in Equa-

tion (4.4). The first term, calculated entirely by the LPCFG parsing model presented

in Section 4.3, is used to prefer generating rhythms which have a high probability ac-

cording to the grammar, while the second term is used to prefer states whose tatums

align closely with the emitted notes. Each emitted note is internally aligned to the

nearest tatum by the LPCFG in order to calculate P(rhythm), but this alignment is

neither saved nor emitted. Remember that the LPCFG is designed to work directly on

monophonic melodies only. Therefore, for polyphonic input, this P(rhythm) term is in

fact a product of one probability per voice, each of which is calculated by the LPCFG.

For voice assignments, we run the model from Section 3.2 as a preprocessing step.

P(Ni|Si) = P(rhythm) ∏
n∈N

P(n|Si.t) (4.4)

The P(n|Si.t) term is calculated as in Equation (4.5), where N1(µ,σ,x) conceptu-

ally represents a normal distribution with mean µ and standard deviation σ evaluated

at x.2 Thus, P(n|Si.t) is used to assign higher probabilities to those states which emit

2Normal distributions are used in multiple places throughout this model with potentially widely vary-

4.4. With Beat Tracking 89

notes which are closely-aligned with their tatums. In this equation, closest(Si.t) repre-

sents the tatum from Si whose time is closest to the onset time of the note n.

P(n|Si.t) =N1
(
0,σn,On(n)−Time(closest(Si.t))

)
(4.5)

It is important to note that due to the way in which these note sets are grouped

by bar, the individual note sets for different paths through the HMM state space for a

given piece will not be identical, although the union of all note sets on any given path

will equal exactly the set of notes present in the piece. To handle this complication,

we introduce a supervisor during the HMM decoding process which takes each note

individually in onset order, grouping them into note sets and passing the sets to the ap-

propriate hypothesis state at each step. This supervisor is discussed further in Section

4.4.1.4.

4.4.1.3 Transition Function

A state Si−1 may transition to a state Si if and only if: (1) the two states’ metrical

hierarchies are identical and (2) the time of the last tatum in Si−1 is equal to the time of

the first tatum in Si. Note that the second condition is invalid in the case of a transition

from S0 to S1 since S0 contains no tatums; in this case, we instead restrict S1.t1 to lie

exactly on the first observed note’s onset time.

The transition probability P(Si|Si−1) is shown in Equation (4.6), where the first

term, defined in Equation (4.7), models the probability of any tempo change and the

second term, defined in Equation (4.8), models the spacing of the tatums themselves.

P(Si|Si−1) = P(Tempo(Si)|Tempo(Si−1))P(S.t) (4.6)

P(Tempo(Si)|Tempo(Si−1)) =

N1(µt0 ,σt0,Tempo(Si)) i = 1

N1
(
0,σt ,

Tempo(Si)−Tempo(Si−1)
Tempo(Si−1)

)
i≥ 2

(4.7)

P(S.t) = E(b ∈ S.t) ∏
b∈S.t

(
E(sb ∈ b) ∏

sb∈b
E(t ∈ sb)

)
(4.8)

In Equation (4.7), the tempo of the first bar (where i = 1) is assumed to be normally

distributed around µt0 with standard deviation σt0 , while subsequent tempo changes

ing standard deviations, resulting in potentially wildly different results when evaluated at an identical
number of standard deviations from the mean for different normal distributions. Additionally, since the
distributions are used in contexts in which they cannot be properly normalised (due to their continuous
domain), the precise probability value for N1(µ,σ,x) is calculated using a standard normal distribution
with mean 0 and standard deviation 1 evaluated at x−µ

σ
.

90 Chapter 4. Metrical Analysis

are evaluated as the proportional change from the tempo of the previous bar, again

normally distributed, this time with mean 0 and standard deviation σt .

For the tatum timings in Equation (4.8), the function E(t), defined in Equation

(4.9), evaluates the probability of the evenness of any given list of times. E(b ∈ S.t)

calculates this for all of the beats b in the state, while the terms E(sb∈ b) and E(t ∈ sb)

perform the same calculation for the sub beats in each beat and the tatums in each sub

beat respectively.

E(t) =

N1(µe,σe,
σ(t)
µ(t))/Enorm

σ(t)
µ(t) ≥ µe

N1(µe,σe,µe)/Enorm
σ(t)
µ(t) < µe

(4.9)

Enorm =
1
2
+

µe

σe
N1(µe,σe,µe) (4.10)

E(t) is a piecewise function which takes as input a list of the lengths of a group of

tatums, sub beats, or beats (rather than their times). Here, µ(t) represents the mean of

those lengths and σ(t) represents the standard deviation of those lengths. The function

is calculated as a modified normal distribution with mean µe and standard deviation

σe, based on the input list’s standard deviation as a proportion of its mean. If this

proportion is greater than or equal to µe, the result is calculated from a straightforward

normal distribution. Otherwise, the resulting value is exactly the value of a standard

normal distribution evaluated at its mean.

This value is then normalised so as to ensure the new distribution’s integral to

again sum to 1 by dividing by the factor Enorm, defined in Equation (4.10) as the sum

of two terms. 1
2 is the area of the standard normal distribution greater than the mean,

and µe
σe
N1(µe,σe,µe) is the area of the rectangle formed by extending the peak of the

standard normal distribution to the left until the value corresponding to 0 from the non-

standardised normal distribution, as values less than this correspond to a negative σ(t),

which is not possible.

4.4.1.4 Optimisations

We use a modified Viterbi search to perform inference on our model, using a beam

search where at each step we save only the b most probable hypothesis states (not

including those still at S0 with no tatums yet). As mentioned in Section 4.4.1.2, we

use a supervisor to group notes into the appropriate note sets for each hypothesis state

at each step. The supervisor is also used to reduce the search space by restricting the

possible transitions from each state given the observed notes.

4.4. With Beat Tracking 91

For the transition from S0 to S1, we introduce two heuristics: (1) the first tatum in

S1 must lie exactly on the onset of the first observed note and (2) the last tatum in S1

must also lie exactly on a note onset, though which note specifically is not restricted by

any means other than limiting the tempo of the first bar using tmin and tmax. According

to these heuristics, for each S0, the supervisor creates the observed note set for every

possible S1. Allowed times for the tatums in S1.t are also restricted based on each

observed note set N1. Essentially, all tatums are placed evenly unless there is a specific

reason not to (i.e., unless a note onset lies close to a tatum).

Specifically, a given value for S1.t is legal if it can ever be generated by the fol-

lowing procedure. First, the appropriate number of beats (according to a given state’s

metrical hierarchy) are placed between the first and last tatum times, as if each tatum

was evenly spaced. Next, each placed beat—excluding the last beat as well as the

first—may be shifted to the location of any note whose onset time is within half of one

sub beat length of the original beat location. Each beat (again excluding the first and

last as appropriate) may then be nudged up to half of a tatum length around its location

with a magnetism of Mb, as shown in Equation (4.11). Here, t is the original time of

the beat, M is the magnetism (Mb in this case) which is used to control how far the beat

is nudged, and N is the set of notes which lie within the given window. This equation

can always return the original time, though it is also allowed to nudge the given time

towards either the onset time of the closest note (closest(N)) or the average onset time

of all notes within the window (avg(N)), if N is large enough. Sub beats are placed

similarly: initially evenly between any of the existing beats, then nudged up to one

tatum length around its location with magnetism Msb. Notice that the sub beats are not

shifted. Finally, tatums are placed evenly between the sub beats (and neither shifted

nor nudged).

nudge(t,M,N) =

t always

t +M(closest(N)− t) |N|> 0

t +M(avg(N)− t) |N|> 1

(4.11)

Allowed times for the tatums in Si.t for i > 1 are restricted to those which can be

generated by the same procedure, with the exception that the final beat in Si.t may

now be shifted and nudged. The initial beat locations are calculated such that with no

shifting or nudging, Tempo(Si−1) = Tempo(Si).

Even with the above restrictions, the search space is still large. As mentioned we

use a beam search, where at each step we save only the top b most probable hypothesis

92 Chapter 4. Metrical Analysis

states (not including those still at S0 with no tatums yet). Before we remove those

hypotheses which fall outside the beam, we remove hypotheses which are deemed to be

too close to another more probable hypothesis based on a threshold ∆min. Specifically,

a hypothesis which has identical metrical hierarchy to a more probable hypothesis, and

whose tempo and most recent tatum time both lie within ∆min of that other hypothesis’

tempo and most recent tatum time is removed.

In addition to the above search space reductions and speed optimisations, we de-

scribe two changes used to make our model more robust in regards to the idiosyncrasies

of live performance such as staccato and ornamentation.

First, for handling staccato notes which are much shorter than their note values

would suggest in the score, we extend each note’s offset until either the onset of the

following note in the bar within its voice (if one exists), or to the end of its bar. This al-

lows the LPCFG, which is trained on metronomic MIDI where staccato is not present,

to better recognise the rhythms present in live performance.

For handling ornamentation such as trills, we use a threshold trillmax. Any note

whose onset time is within trillmax of the onset time of the previous note within its

voice is removed (though the removed notes are still used when deciding whether to

remove the subsequent note). The overall effect of this process is that trills or any very

fast ornamentation (which again would not be present in the LPCFG’s training data)

are reduced to a single short note with its onset at the start of the trill or ornamenta-

tion. If this optimisation is used in conjunction with the extend notes optimisation, the

remaining notes are extended only after trills and ornamentation are removed, and the

result is that a fast ornamentation is replaced by a single long note.

4.4.1.5 Example

An example of our model being run on the simple 2
4 rhythm ||♩��|| . . . is shown in

Figure 4.8. Most of the notes are played metronomically, except for the first eighth

note whose onset is slightly early. Ground truth bars, beats, and sub beats are given

by solid, dashed, and dotted vertical lines respectively. Four hypotheses are shown in

rows, where the metrical hierarchy is displayed in the box on the left. Mb,s refers to

a hierarchy with b beats per bar and s sub beats per beat, l represents the number of

tatums per sub beat, and a represents the anacrusis length. In each hypothesis state,

tatums are shown by dots, ordered tatum, sub beat, beat, and bar from bottom to top.

The supervisor is shown on the bottom observing every note individually, and each

state observes a note set prepared by the supervisor at the appropriate time. Notice that

4.4. With Beat Tracking 93

the notes in the note sets are displayed by their ground truth value although their value

in any given state may be different depending on the tatum locations.

The top hypothesis is a M2,2 meter with 4 tatums per sub beat and an anacrusis

length of 8 tatums. Initially, the supervisor lets this hypothesis observe the first half

note at the time of the quarter note (so that it knows when to place the initial downbeat).

S1 for this hypothesis contains only nine tatums (since its anacrusis length is 8), and

they are placed evenly. Following that, S2 extends past the initial two bars shown,

and would likely be given a relatively low P(rhythm) due to its rhythm: an eighth

note, followed by two sixteenth notes, followed by a quarter note. Also notice that

its second sub beat does not match perfectly with the ground truth beat time, since

it has been nudged, but not with a magnetism of 1. This hypothesis would correctly

match most ground truth bars (as beats) and ground truth beats (as sub beats), and its

probabilities would be relatively high except for perhaps P(rhythm), since it gets two

ground truth bars of notes for each of its bars.

The next hypothesis is a M2,2 meter with 4 tatums per sub beat and no anacrusis,

and correctly matches the ground truth meter. It initially observes the first half note,

like the previous hypothesis, but since it has no anacrusis, places a full bar of tatums

up to that note. Its S2 is fully shown, after observing the notes from the second bar,

and its tatums line up well with the ground truth. Its second beat has been shifted to

exactly the correct location, and its third sub beat has been nudged very close to the

ground truth location. This hypothesis would likely have the highest probability for

our model given that the notes match up well with tatums, the rhythm and tempo both

seem reasonable, and its tatums are relatively evenly spaced.

The next hypothesis is again a M2,2 meter with 4 tatums per sub beat and no anacru-

sis; however, it first observes the first three notes together in a note set. Thus, in its

S1, though the first beat is shifted to the ground truth downbeat, therefore matching

well, its second beat does not match the underlying notes, with the sub beat not being

nudged enough to match the onset time of the first eighth note. Notice that in S2, the

tempo jumps back up to the average tempo from S1, rather than the tempo of the last

tatum in S1. This hypothesis would not align its tatums well with the underlying notes

and would therefore have a low probability.

The final hypothesis is a M3,2 meter with 4 tatums per sub beat and no anacrusis,

which initially observes a set of the first two notes. In S1, its third beat shifts correctly

and thus its tatums line up with the ground truth time well (except for the fact that

it has the incorrect metrical hierarchy, with 3 beats per bar). In the beginning of its

94 Chapter 4. Metrical Analysis

Supervisor

 ♩ � �

M2,2

l = 4

a = 0

S1
S2

 ♩��

M2,2

l = 4

a = 0

S1
S2

♩�

M3,2

l = 4

a = 0

S1
S2

♩

M2,2

l = 4

a = 8

S1
S2

Figure 4.8: Four example hypotheses of our model being run on the simple 2
4 rhythm

||♩��|| Ground truth bars, beats, and sub beats are given by solid, dashed,

and dotted vertical lines respectively. Four hypotheses are shown in rows, where the

metrical hierarchy is displayed in the box on the left. Mb,s refers to a hierarchy with b

beats per bar and s sub beats per beat, l represents the number of tatums per sub beat,

and a represents the anacrusis length. In each hypothesis state, tatums are shown by

dots, ordered tatum, sub beat, beat, and bar from bottom to top. The supervisor is

shown on the bottom observing every note individually, and each state observes a note

set prepared by the supervisor at the appropriate time.

4.4. With Beat Tracking 95

S2, its second beat shifts to the correct location, and its second sub beat is nudged

slightly towards the correct location as well, though not fully. This hypothesis would

match most beats and sub beats correctly, but miss the bars. It’s evenness and tempo

probabilities would be high, and the notes match up well with its tatum times, but its

P(rhythm) would be low due to its odd bar timings.

Given this simple example, and only looking at 4 hypotheses, our model would

assign the correct hypothesis the greatest probability. In practice, there would be many

more meter types and anacrusis lengths, and the supervisor would create more S1s with

a wider variety of initial note sets for each hypothesis. However, this simple example

serves well to show our model in action and to hopefully make its description more

clear.

4.4.2 Evaluation

4.4.2.1 Corpora

For evaluation, we use two corpora: one containing metronomic MIDI files of the

48 fugues from Bach’s Well Tempered Clavier (WTC)3 and Bach’s 15 Inventions4,

and another of 13 live performance MIDI files of Bach’s fugues and preludes from

the WTC, taken from CrestMusePEDB5 (Hashida et al., 2008). For training, we use

an additional corpus: the miscellaneous corpus, also used by Temperley (2009) for

training, divided into a live performance portion and a metronomic portion.

Since our model requires voice assignments, we run the model from Section 3.2 as

a preprocessing step for all corpora.

4.4.2.2 Training

To train most of the parameters for the beat tracking model, we measure statistics

from the live performance portion of the miscellaneous corpus. To set the mean and

standard deviation of the initial bar’s tempo, µt0 and σt0 , we measure the mean and

standard deviation of the tempi of the first bars of all of the pieces. The standard

deviation of tempo changes, σt is set similarly, measuring the standard deviation of

the proportional change in tempo between each consecutive bar in the pieces. The

evenness mean and standard deviation, µe and σe, are set as follows. For each bar in the

3The fugues were acquired from www.musedata.org.
4The inventions were acquired from www.imslp.org.
5We do not include the 13th prelude from WTC Book I due to an error in the file.

96 Chapter 4. Metrical Analysis

training corpus, we measure its evenness as the standard deviation of the beat lengths

in the bar divided by the mean of the beat lengths in that bar. Then, µe and σe are set to

the mean and standard deviation of these evenness values throughout the entire corpus.

(Even though these values are used for all levels of the metrical structure in our model,

the annotated beats in the corpus are the most reliable, and we make an assumption

that the evenness should be relatively constant throughout all metrical levels.) The

note standard deviation σn is set by measuring the standard deviation of the difference

between each note and the closest tatum throughout the pieces. The initial bar tempo

bounds tmin and tmax are set by measuring the minimum and maximum tempi of any

initial bar throughout the pieces, and rounding to the nearest 100000 µs.

The remaining parameters are set in an ad hoc fashion through testing on the mis-

cellaneous corpus, and we have found our model’s performance not to be very sensitive

to the precise values used. We use a magnetism of 1.0 at the beat level (Mb) and 0.5 at

the sub beat level (Msb) so that the beats are more likely to lie precisely on a note (as

beats are more salient than sub beats). We take 0.1 s to be trillmax, the maximum length

for a note to be considered ornamentation, set by looking at typical ornamentation note

lengths in the corpus. ∆min and b are simply optimisations used to improve the speed of

our model, and we use values of 1 ms and 200 respectively, though in practice, lower

values of ∆min or higher values of b only improve our model’s performance.

All of the parameter values for our beat tracking model used for evaluation are

listed in Table 4.4.

For our standard evaluation, we train the LPCFG’s probabilities from the metro-

nomic portion of the miscellaneous corpus, since this allows for a direct comparison

with the model of Temperley (2009). However, as we discussed in Section 4.3, the

grammar is sensitive to a lack of training data, particularly a lack of training data

in the style of the evaluation corpus, which happens when training on the miscella-

neous corpus for evaluation on Bach compositions. To investigate this further, we also

run experiments when training the LPCFG’s probabilities on a superset containing the

metronomic portion of the miscellaneous corpus as well as the entire metronomic cor-

pus of Bach compositions. Note that when evaluating this version of our model, we

leave out the piece currently being evaluated from the grammar’s training set so as to

avoid overfitting. In all experiments, we train the LPCFG with data that has undergone

the same optimisations as the data to be evaluated (in terms of extending notes and

removing trills and ornamentation).

4.4. With Beat Tracking 97

Parameter Value

µt0 1.088500 s

σt0 709.918 ms

σt 0.0743

µe 0.0181

σe 0.0336

σn 6.655 ms

tmin 0.4 s

tmax 3 s

Mb 1.0

Msb 0.5

trillmax 0.1 s

∆min 1 ms

b 200

Table 4.4: The parameter settings we use for our model’s evaluation.

4.4.2.3 Metric

To evaluate our model’s performance, we want a metric that is able to capture partial

correctness, for example the misclassification of beats as bars or the grouping of bars

together. Many existing beat tracking evaluation metrics take into account only de-

tected beats, plus some classification of the time signature, which would mark such

metrical hypotheses as incorrect. We would like a metric similar to that from Section

4.3.2.1; however, as it is designed for use mainly on beat-aligned data where a metrical

hypothesis can not move in and out of phase throughout a piece, a few adjustments

must be made to adapt it for use on live performance data.

We call this newly designed evaluation metric the metrical F-measure. It takes into

account every grouping at three levels of the metrical hierarchy throughout an entire

piece: the sub beat level, the beat level, and the bar level. For each hypothesised

grouping at these metrical levels, we check if it matches a ground truth grouping. A

hypothesised grouping is said to match a ground truth grouping if its beginning and

ending times are each within 70 ms of the beginning and ending times of the ground

truth grouping, regardless of the metrical level of either grouping.6 Each matched pair

of groupings within a piece count as a true positive, while any unmatched hypothesis

6This 70 ms window is taken directly from a popular beat tracking metric (Dixon, 2007).

98 Chapter 4. Metrical Analysis

groupings count as false positives, and any unmatched ground truth groupings count as

false negatives. The metrical F-measure of a piece is then calculated as the harmonic

mean of precision and recall as usual, and our reported results average these metrical F-

measures across all songs in each corpus. Because the resulting scores are not normally

distributed, statistical significance is calculated using a Wilcoxon signed rank test.

4.4.2.4 Results

We compare our model against that of Temperley (2009), which is trained entirely on

the miscellaneous corpus. However, Temperley’s model does not explicitly identify

bar lines. Rather, it identifies beats and a single level above, consisting of either two

or three beats grouped together, and it therefore cannot explicitly model both the beat

level and the bar level of a piece with four beats per bar. This is a slight drawback

to the model, and we report two scores for it: one taking the level above the beats to

be bars in all cases, and another using a bar-score optimisation as follows. For pieces

with four beats per bar, where Temperley’s model has grouped beats into groups of

two, we assign the maximum metrical F-measure of three different bar settings: (1)

grouping the beats into bars with two beats per bar as given by the model, (2) grouping

the beats into four beats per bar starting at the first complete beat grouping given by

the model, and (3) grouping the beats into four beats per bar starting at the second

complete beat grouping given by the model. This bar-score optimisation essentially

results in an upper bound for Temperley’s model’s performance, assuming it makes

the best possible bar level choice for all pieces with four beats per bar, and we mark

with an * wherever it is used.

For direct comparison, the standard version of our model is trained on the same

corpus as Temperley’s model, but we present an evaluation of a few different versions

of it based on different optimisations or training data. Results can be found in Table

4.5, where +T indicates use of the remove trills and ornamentation optimisation, +X

indicates use of the extend notes optimisation, and +Bach indicates that the LPCFG

training was augmented with the additional Bach compositions. We do not also aug-

ment Temperley’s model with additional training data because there is no straightfor-

ward way to do so, and the model does not seem to be one which would be as sensitive

to a lack of training data as our model.

The results show that on metronomic data, our model without optimisations sig-

nificantly outperforms Temperley’s when using identical training data (p < .05). The

optimisations offer no significant improvement (which is unsurprising as they were de-

4.4. With Beat Tracking 99

Method Metronomic Live Performance

Temperley (2009) 67.65 47.62

Temperley (2009)* 69.45 49.84

This Work 78.71 39.63

+T 75.36 39.40

+X 79.89 45.27

+X +T 77.67 47.81

+Bach 80.48 38.21

+Bach +T 80.08 42.35

+Bach +X 80.50 55.43

+Bach +X +T 80.48 56.51

Table 4.5: The average metrical F-measure of our method compared against those of

Temperley (2009) on our two corpora. The * indicates Temperley’s model’s performance

using the bar-score optimisation. For our model, +T indicates use of the remove trills

and ornamentation optimisation, +X indicates use of the extend notes optimisation, and

+Bach indicates using the additional Bach training data for the LPCFG.

signed specifically to help with live performance), but augmented training data leads

to a small (not statistically significant) but consistent increase in performance across

all optimisation configurations. On live performance, our model without optimisa-

tions underperforms Temperley’s. However, the optimisations lead to increased per-

formance: our model using both optimisations matches Temperley’s non-optimised

performance with identical training data, and exceeds it by almost 9 points with aug-

mented training data (though this difference is not statistically significant). The effect

of each of our model’s optimisations is discussed in detail in Section 4.4.2.4.1.

The distribution of metrical F-measures for Temperley’s model, run on live per-

formance data, appears to be binomial: of the 13 pieces, three score below 20, while

six score above 55, indicating that while the model performs well in general, it some-

times guesses a meter which is nearly entirely incorrect. With both optimisations, on

the other hand, our model’s scores are normally distributed around 65, with 8 pieces

scoring between 55 and 75. Additionally, no pieces score below 20, indicating that it

is more likely to make some partially correct guess, even if it is not entirely correct.

The 1st prelude from WTC Book I illustrates this difference in performance, and its

first bar is shown in Figure 4.9 along with the results of Temperley’s model and our

100 Chapter 4. Metrical Analysis

+Bach +X +T
Bar:

Beat:
Sub beat:

Temperley
Bar:

Beat:
Sub beat:

Figure 4.9: The first bar of the 1st prelude from WTC Book I (BWV 846). Above the

music, the results from Temperley’s model (bottom) are shown as well as the results

from our +Bach +X +T model (top). Here, a dot represents a tatum placement at either

the bar, beat, or sub beat level. The ground truth bar is given by the solid vertical line,

ground truth beats are given by dashed vertical lines, and ground truth sub beats are

given by dotted vertical lines.

+Bach +X +T model. The piece is in 4
4 time, and Temperley’s model achieves a score

of only 15.74, guessing a 3
8 time whose beats are even out of phase with the ground

truth sub beats throughout much of the piece. On the other hand, our model scores

93.27, guessing a 4
4 time which begins perfectly aligned, although it does shift slightly

out of phase later in the piece.

One example of a piece for which Temperley’s model outperforms ours is the 2nd

prelude of WTC Book II, the first bar of which is shown in Figure 4.10 along with the

results from Temperley’s bar-score optimised model and our +Bach +X +T model. For

this piece, Temperley’s model achieves a score of 83.30 while ours only manages a

score of 61.83. This piece is in 4
4 time and contains relatively non-syncopated rhythms,

with many bars containing either only sixteenth notes or only eighth notes in a given

voice, as can be seen in the figure. While Temperley’s model captures this meter

4.4. With Beat Tracking 101

+Bach +X +T
Bar:

Beat:
Sub beat:

Temperley*
Bar:

Beat:
Sub beat:

Figure 4.10: The first bar of the 2nd prelude from WTC Book II (BWV 871), showing

an example the nearly isochronous bars which give our model problems. Above the

music, the results from Temperley’s bar-score optimised model (bottom) are shown as

well as the results from our +Bach +X +T model (top). Here, a dot represents a tatum

placement at either the bar, beat, or sub beat level. Ground truth bars are given by solid

vertical lines, ground truth beats are given by dashed vertical lines, and ground truth

sub beats are given by dotted vertical lines.

correctly (with some phase errors), our model guesses a 4
4 time which is early by a

single beat. Our model has some difficulty finding the correct phase of isochronous

melodies since it uses no pitch or harmonic information (which are the most salient

indicators of metrical phase in such isochronous pieces). Temperley’s model, on the

other hand, also includes chord detection, allowing it to better handle such melodies.

4.4.2.4.1 Optimisations Another aspect of our model to investigate is the effect of

the different optimisations on its performance. As can be seen from Table 4.5, they (+X

and +T) have little effect on metronomic data (which is not surprising given that they

are designed specifically for live performance). However, on live performance data,

they do indeed improve performance. Both with and without augmented training data,

the remove trills optimisation has a small effect by itself (essentially none without

the data and very small with it, and not statistically significant in either case), but

102 Chapter 4. Metrical Analysis

+Bach
Bar:

Beat:
Sub beat:

+Bach +T
Bar:

Beat:
Sub beat:

Figure 4.11: The treble clef of the second bar of the 7th fugue from WTC Book I (BWV

852). The trill on the second beat of this excerpt repeats throughout the piece, leading

the +Bach model to lengthen its beat length such that the trill is interpreted as 16th

notes. Above the music, the results from our +Bach +T model (bottom) are shown

as well as the results from our +Bach model (top). Here, a dot represents a tatum

placement at either the bar, beat, or sub beat level. The ground truth bar is given by

a solid vertical line, ground truth beats are given by dashed vertical lines, and ground

truth sub beats are given by dotted vertical lines.

extending notes leads to a significant improvement (p < .05). The combination of both

optimisations improves performance even further (though not statistically significant),

leading to peak performance both with and without augmented training data.

One specific example where the remove trills optimisation leads to improvement

with augmented training data is on the 7th fugue from WTC Book I. The treble clef

of the second bar of the piece is shown in Figure 4.11, including the results from our

+Bach and +Bach +T models, which achieve scores of 31.58 and 60.20 respectively.

The trill on the second beat of this excerpt repeats throughout the piece, leading the

+Bach model to lengthen its beat length such that the trill is interpreted as 16th notes.

With the remove trills optimisation, however, our model is able to find the correct

metrical structure. Essentially, the remove trills optimisation frees our model from the

constraint of trying to align its tatums with all of the notes in a trill or ornamentation.

4.4. With Beat Tracking 103

+Bach
Bar:

Beat:
Sub beat:

+Bach +X
Bar:

Beat:
Sub beat:

Figure 4.12: Bars 10 and 11 of the 17th prelude from WTC Book I (BWV 862), showing

the pattern which repeats throughout the piece in the bass voice. All of the eighth notes

in the pattern are played staccato, something which our extend notes optimisation is

able to overcome. Above the music, the results from our +Bach +X model (bottom) are

shown as well as the results from our +Bach model (top). Here, a dot represents a

tatum placement at either the bar, beat, or sub beat level. Ground truth bars are given

by solid vertical lines, ground truth beats are given by dashed vertical lines, and ground

truth sub beats are given by dotted vertical lines.

An example of a piece for which the extend notes optimisation makes an improve-

ment is the 17th prelude from WTC Book I. In this piece, in 3
4 time, the lowest voice

has a very common repeated rhythm of an eighth note followed by two sixteenth notes

followed by four more eighth notes, where the eighth notes are all played staccato.

Bars 10 and 11 of this piece, which contain the pattern, are shown in Figure 4.12 along

with the results from our +Bach model with and without the extend notes optimisation.

With the optimisation, our model correctly recognises the beat and sub beat levels,

although it incorrectly guesses 2
4 time rather than the correct 3

4 time, scoring 53.59.

Without the optimisation, on the other hand, these eighth notes are not as salient, and

the model instead guesses a 2
2 meter which moves in and out of phase throughout the

piece, achieving a score of only 16.47. Throughout the corpus, the extend notes opti-

misation helps find strong notes whenever they are played staccato.

104 Chapter 4. Metrical Analysis

The combination of both optimisations improves overall performance even further,

enabling the model to handle both staccato passages and ornamentation. The improve-

ments from both optimisations are seen in the fully optimised model, alongside other

slight improvements throughout the corpus such as fixing the placement of a single

misaligned beat here or there. For example, in the previously discussed 17th prelude

from WTC Book I (see Figure 4.12), the fully optimised model achieves a metrical

F-measure of 60.35 while no other model eclipses a score of 54, even though the basic

metrical alignment (a 2
4 meter) does not change between the +Bach +X model and the

fully optimised one.

4.5 Conclusion

In this chapter, we have described models for metrical structure detection and align-

ment from MIDI data, both metronomic and live performance.

First, we have presented an LPCFG for full metrical structure detection and align-

ment of metronomic data, and we have shown that our grammar improves over multiple

baseline methods when run on metronomic MIDI data using a novel metric proposed

for the task. The fact that lexicalisation adds definite value over a standard PCFG

shows that there are complex rhythmic dependencies in music which such lexicalisa-

tion is able to capture.

We have also presented an HMM which performs metrical structure detection and

alignment on live performance data, and we have shown that the model achieves state-

of-the-art performance when evaluated on a corpus of metronomic data, as well as

a second corpus of live performance data. The HMM incorporates the LPCFG as

one component, which allows both models to work with each other to align an input

piece with a detected metrical structure. This joint model requires no information a

priori except for note onset and offset times, and is both probabilistic and incremental.

We have also proposed a new metric for the task, which takes into account vertical

misalignments (for example, those which align the beat level of a piece with bars).

Metrical structure detection and alignment are clearly important tasks for any com-

plete transcription system, and we have shown that our joint model is able to per-

form them well, even using only rhythmic data. Incorporating additional information

such as pitch or harmony should only lead to better performance. Specifically, it has

been shown that harmonic changes are most likely to occur at the beginnings of bars

(Papadopoulos & Peeters, 2011), and that low notes may be a salient feature of strong

4.5. Conclusion 105

beats in addition to note duration (Dixon, 2001). In fact, without such additions, our

grammar cannot hypothesise a full meter for a perfectly isochronous melody.

The LPCFG itself is somewhat sensitive to a lack of training data, though it does

learn metrical stress patterns quickly, and we have shown that performance continues

to improve as more training data is given to it. More aggressive cross-level back-off

techniques could also in theory make the grammar more robust to such a lack of data.

For example, it may be possible to model the transitions at the sub beat level of a
9
X meter type using the beat level transitions of a 3

X meter type. Similar cross-level

learning techniques could also allow our grammar to be applied to more uncommon or

irregular meter types such as 5
X or 7

X, perhaps as the concatenation of the more common

meter types.

Chapter 5

Joint Analysis

This chapter presents work towards the goal of a joint music language model consisting

of voice separation (see Chapter 3), metrical structure detection and alignment (see

Chapter 4), note value detection (not covered), and harmonic analysis (not covered).

Thus far, we have only run and evaluated each aspect of our model independently. A

joint analysis would bring our proposed model one step closer to a complete music

language model for AMT.

Section 5.2 first presents the joint model, a combination of the voice separation

model from Chapter 3 and the metrical analysis model from Chapter 4, and includes

a discussion on different strategies for their integration. For the evaluation of such a

joint model, there is of course the option of evaluating each aspect of the model inde-

pendently, which we do. However, as we are trying to move towards a joint model, a

joint evaluation strategy would be preferable. To that end, Section 5.3 contains a dis-

cussion on AMT evaluation, and proposes a metric for the joint evaluation of complete

AMT systems, as well as strategies and principles that allow it to be adapted for use

with models that perform only certain subtasks of a complete transcription, such as our

joint model.

This chapter is based on the published work “Evaluating automatic polyphonic

music transcription” (McLeod & Steedman, 2018a).

5.1 Introduction

A music language model which analyses many different aspects of music jointly is

preferred, as it has been shown it previous work that different aspects of a musical

analysis can inform each other. For example, Papadopoulos and Peeters (2011) showed

107

108 Chapter 5. Joint Analysis

that chord changes tend to align with downbeats (and it is not unreasonable to hypoth-

esise that such a claim can be generalised to stating that chord changes tend to occur

in stressed positions in a piece’s metrical structure). We also noted in Chapter 3 that

some knowledge of metrical structure could improve voice separation performance.

Furthermore, our experiments in Section 3.3 showed that a joint approach to multi-

pitch estimation and voice separation model outperforms a combination of identical

components which is instead run independently sequence.

Certainly there is a benefit to performing joint analysis, but there is also a cost. The

conceptual complexity of two models blows up significantly when they are combined

into one. Nevertheless, we present such a model here in Section 5.2. Specifically, we

combine our voice separation model from Chapter 3 and our metrical analysis model

from Chapter 4 into a single joint probabilistic model, which runs incrementally and

requires only note onsets, offset, and pitches as input. We evaluate our model against

other simpler, non-integrated versions of our two models.

In Section 5.3, we discuss the joint evaluation of music transcription and analysis,

and propose a new metric for the task. Our metric is designed in a way that it does

not penalise a model twice for a single error; for example, it will not assign a penalty

for not assigning a note to the correct voice when the model has not even detected

that note in the first place. We also show our metric’s effectiveness through the use

of specific examples, and present an evaluation of our own model using it. While our

joint model does not perform a full transcription and analysis from audio data (and to

our knowledge no model yet exists which does), our metric is modularised in a way

that it can be applied to any subset of the tasks involved.

5.2 Joint Model

Integrating our voice separation model with our metrical alignment model is a rela-

tively simple process, since both were designed with such an integration in mind. Both

models are HMMs which are incremental, probabilistic, and require no a priori infor-

mation. Thus, our joint model can be created intuitively by simply defining each joint

state to be the combination of a state from the voice separation HMM and a state from

the metrical alignment HMM. The transition and emission probabilities of the joint

HMM are simply calculated as the product of the transition and emission probabilities

of each individual HMM.

A complication arises when actually performing inference on the joint HMM. We

5.2. Joint Model 109

again use a modified Viterbi search with a beam, but in order to handle the complexity

of the state space, our integrated beam size should be at least the product of the beam

size used for voice separation alone (25), and the beam size used for metrical alignment

alone (200). The resulting beam size of 50000 is too large to be reasonably tractable.

Thus, we use a smaller beam size b along with two additional constraints.

First, we do not remove a hypothesis state from our search unless it has observed

at least a full bar of notes at its tempo. This prevents our beam from filling up with

hypotheses with very fast tempi without giving the slower hypotheses a chance to be-

gin. Second, we introduce a voice beam with size bv, which can override the first

constraint, and prevents the beam from filling up with too many different voice separa-

tion hypotheses (since the required beam for voice separation is much smaller than that

for metrical alignment). Specifically, if we have greater than b hypotheses in the beam

(due to the first constraint), and those hypotheses consist of more than bv unique voice

separation hypotheses, we repeatedly remove the least probable joint state associated

with the least probable voice separation state from the beam until either (1) we have

only b hypotheses left in the beam, or (2) we have only bv unique voice separation

hypotheses in the beam.

5.2.1 Results

We evaluate our joint model on 13 live performance MIDI files of Bach’s fugues and

preludes from the WTC, taken from CrestMusePEDB1 (Hashida et al., 2008). This

is the same live performance corpus used for evaluation in Chapter 4. For the voice

separation model’s parameters, we use those learned for evaluating the Live WTC

corpus in Chapter 3. For the metrical alignment model, we use the version with both

optimisations and augmented training data, and we use the same parameter settings

noted in Chapter 4. For the integrated model, we use a beam size of b = 1000 and a

voice beam size of bv = 5.

To evaluate our joint model, we present both voice separation results (using the

F-measure described in Section 3.2.3.3) and metrical alignment results (using the met-

rical F-measure proposed in Section 4.4.2.3). We compare our integrated model against

two baselines. First, our two individual HMMs, run entirely independently (the num-

bers are taken from their respective individual evaluations in Chapters 3 and 4). Sec-

ond, the two HMMs run sequentially as follows. We first run the voice separation

1We do not include the 13th prelude from WTC Book I due to an error in the file.

110 Chapter 5. Joint Analysis

Model Voice Meter

Independent 94.34 56.51

Sequential 94.56 57.33
Joint 85.78 27.77

Table 5.1: The results of our joint model on both voice separation and metrical alignment

compared against those of our two baselines: Independent, which runs each individual

model entirely independently; and Sequential, which runs both individual models in

sequence rather than simultaneously.

HMM with the same parameter settings as above, except with a beam size of 5. That

is followed by running the metrical alignment model with the same parameter settings

as in Chapter 4 on each of the 5 voice separation hypotheses. The most probable joint

state is formed as the one with the greatest combined probability (taken as the prod-

uct of the final voice separation state’s probability and the associated final metrical

alignment state’s probability).

The results are summarised in Table 5.1, where it can be seen that the sequential

version of our joint model achieves the best results, outperforming the baseline of each

component running entirely independently. This shows that the two components of the

model are indeed able to work together to find a more accurate analysis. The fully joint

model, however, clearly suffers from too small of a beam, performing substantially

worse than the other two models. It seems that a more sophisticated integration strategy

would be required in order for such a model to be feasible. In particular, it tends to align

each piece with a slow 12
4 meter, indicating that a larger beam (or a more sophisticated

search modification) would be required for increased accuracy. Essentially, because

of the large branching factor of our joint model, these slow meters are able to fill up

the beam rapidly, and because they do not assign their metrical alignment a probability

until the end of a bar, by the time such a probability calculation is made, the beam is

already full with these slow meters. Both the placement of beats and the structure of a

rhythmic tree in our LPCFG depends strongly on a bar’s entire context, so waiting until

the end of each bar to assign a hypothesis a probability is unfortunately necessary. It is

possible that a rough probability estimate (or an upper bound, as in A* search) could

be calculated for the incomplete trees, but we leave the calculation and integration of

such estimates for future work.

Most pieces from the corpus see very little change for the sequential model com-

5.2. Joint Model 111

Time (s)

30.0 30.5 31.0 31.5 32.0

M
ID

IP
itc

h
54

56

58

Figure 5.1: A MIDI representation of one instance of the repeated trill from the 23rd

fugue from WTC Book I (BWV 868). Here, all of the notes belong to the second-lowest

voice. The notes shown with a white border are erroneously assigned to the lowest

voice—which has no notes at the time—by the independent model, while the sequential

model makes the correct voice assignments.

pared with the independent model in voice separation accuracy, with largest increase

in performance coming from the 23rd fugue from WTC Book I, whose F-measure in-

creases from 89.81 to 92.32. It has a repeated trill which occurs three times throughout

the piece, and a MIDI representation of one of these occurrences is shown in Figure

5.1. Run independently, the voice separation model assigns the bottom note of the trill

to a different voice than the top note of the trill every time. In the figure, this results

in the white-bordered notes being assigned erroneously to the lowest voice, while the

other notes are assigned correctly to the second-lowest voice. In particular, since the

notes tend to overlap each other, the probability of assigning them all to the same voice

is slightly lower than this multi-voice assignment, all else being equal. With the met-

rical alignment model, however, the rhythm resulting from the multi-voice assignment

(repeated short notes which do not directly line up with any particularly probable met-

rical grid) is assigned a very low probability. Instead, the sequential model prefers

to correctly assign all of the notes of each trill to a single voice. The metrical align-

ment model then recognises the pattern as a trill and removes the trill notes before its

rhythmic probability calculation, resulting in a rhythm with a much greater probabil-

ity. Thus, although this single-voice assignment has a slightly lower voice assignment

probability, the combined probability is greater, and the sequential model makes the

correct voice assignment.

The metrical F-measures change more often than the voice separation F-measures

in the sequential model compared to the independent model, with some of the values

112 Chapter 5. Joint Analysis

Sequential
Bar:

Beat:
Sub beat:

Individual
Bar:

Beat:
Sub beat:

Figure 5.2: The second bar of the 2nd fugue from WTC Book II (BWV 871). Above the

music, the results from our individual model (bottom) are shown as well as the results

from our sequential model (top). Here, a dot represents a tatum placement at either the

bar, beat, or sub beat level. Ground truth bars are given by solid vertical lines, ground

truth beats are given by dashed vertical lines, and ground truth sub beats are given by

dotted vertical lines.

decreasing (due to more noisy voice separation results), and some increasing. The most

substantial increase comes from the 2nd fugue from WTC Book II, the second bar of

which is shown in Figure 5.2. This piece is in 4
4 time, and while the individual version

of the model guesses an out-of-phase 2
8 time, the sequential version instead guesses

out-of-phase 2
4 time. While the sequential version is still equally out-of-phase, it has

aligned its sub beats (rather than its beats, as in the independent model) with the ground

truth sub beats. Thus, its false positives come from its beats and bars (approximately

six per ground truth bar), rather than the independent model, which has false positives

much more often from its sub beats and bars (approximately 20 per ground truth bar).

The sequential version therefore has a much higher precision, while maintaining its

recall, resulting in a higher metrical F-measure than the independent version of our

model.

It appears that the sequential model improves over the independent model in met-

rical F-measure because it is able to take a note or two which, in the correct voice,

would result in an improbable rhythm according to the grammar, and instead assign

5.3. Joint Evaluation 113

them to a different voice, leading to a slightly more likely rhythm. This ability enables

the sequential model to improve its metrical F-measure at the expense of a very small

decrease in voice separation performance (which is overshadowed by the increase in

voice separation performance described above). We would expect that the fully joint

model would continue to improve over the sequential model, were its beam size not a

hindrance.

5.3 Joint Evaluation

In this section, we propose a new metric to quantitatively evaluate AMT systems that

perform both multi-pitch detection and a complete music analysis including voice

separation, metrical alignment, note value detection, and harmonic analysis. The

metric, MV 2H (from Multi-pitch detection, Voice separation, Metrical alignment,

note Value detection, and Harmonic analysis), can be easily adapted for systems that

do not perform all of the tasks involved, such as our joint model from the previ-

ous section, and Section 5.3.3 includes an analysis of our model’s performance us-

ing the metric. The code for the evaluation metric described here is available at

https://www.github.com/apmcleod/MV2H.

One of the main principles of the new metric is that of disjoint penalties: that mis-

takes should only be penalised once. That is, if an error in one part of the transcription

causes a mistake in another part, that error should only be counted once. For example,

if a pitch is missed during multi-pitch detection, the metric should not further penalise

missing that note from the voice separation results.

Based on this principle, we do not include errors related to the proper typesetting

of a transcription in our metric, and we do not even require a typeset musical score to

perform our evaluation. Most typesetting decisions come down to the proper analysis

of the underlying piece. For example, if metrical alignment is performed properly,

beaming comes naturally. Likewise, stem directions can follow from voice separation

and pitch spelling is a consequence of a proper harmonic analysis. For details related

to the proper typesetting of music and its relation to the underlying music analysis, see

Gould (2011).

114 Chapter 5. Joint Analysis

5.3.1 Existing Metrics

Each of the separate tasks involved in the full AMT process has been the subject of

much prior research, and there are existing metrics for each of them. This section

gives a brief overview of the most widely used metrics for each subtask.

5.3.1.1 Multi-pitch Detection

Multi-pitch detection is evaluated both at the frame level and at the note level depend-

ing whether a given model includes some form of note tracking or not (see Chapter 2

for an overview of existing multi-pitch detection systems). However, as the goal of this

section is to define a metric which is useful for a complete AMT system, the note-level

evaluation metrics are most applicable here. Readers interested in the frame-based

evaluation, an accuracy metric, should refer to Poliner and Ellis (2007), where it was

first introduced.

For the note-level metric, a note is defined by its pitch, onset time, and offset time.

Bay et al. (2009) define two different precision, recall, and F-measures for note-level

multi-pitch detection. For the first, they define true positives as those notes detected

whose pitch lies within a quartertone (3%) of that of a ground truth note, and whose

onset time is within 50 ms of the same ground truth note’s onset time, regardless of

offset time. Spuriously detected notes are each assigned a false positive, and ground

truth notes which are not matched by a detected note are each assigned a false nega-

tive. The second metric they propose is identical, with the additional constraint that

a detected note’s offset must be accurate to within 20% of the corresponding ground

truth note’s duration, or lie within 50 ms, whichever is larger, for it to be considered a

true positive. Both of these metrics are used in the Music Information Retrieval Eval-

uation Exchange (MIREX) Multiple Fundamental Frequency Estimation & Tracking

Task (MIREX, 2017e), and in the mir eval package by Raffel et al. (2014).

For our purposes, we care mostly about onset time and pitch (to the nearest semi-

tone) as these aspects are most directly relevant to the underlying musical score. Offset

time, on the other hand, is applicable as far as it relates to note value, and is discussed in

Section 5.3.1.4. Our multi-pitch detection metric will therefore be based most closely

on the first multi-pitch F-measure, which doesn’t account for offset time.

5.3. Joint Evaluation 115

5.3.1.2 Voice Separation

In addition to AVC and the simple F-measure, both of which are detailed in Section

3.2.3.3, Kirlin and Utgoff (2005) define two metrics: soundness, which measures the

percentage of consecutive notes in an assigned voice which belong to the same ground

truth voice; and completeness, which measures the percentage of consecutive notes in

a ground truth voice which were assigned to the same voice.

Each of these metrics would penalise an AMT system for any spurious notes, so

for our proposed metric, we will need to use a modified version of one of them (or

design a new metric) in order to enforce the principle of disjoint penalties.

5.3.1.3 Metrical Analysis

Metrical analysis is most often approached as one of three different tasks: downbeat

tracking, beat tracking, or metrical structure detection and alignment. Downbeat track-

ing and beat tracking each involve identifying points in time, and thus can theoretically

be evaluated using the same metrics, which are summarised by Davies, Degara, and

Plumbley (2009), and more recently by Davies and Böck (2014). F-measure (which

downbeat tracking work uses almost exclusively), described by Dixon (2007), is cal-

culated by counting the number of (down)beats which lie within some window length

(usually 70 ms) of an annotated (down)beat, and is used in the MIREX Audio Down-

beat Estimation task (MIREX, 2017c). Cemgil, Kappen, Desain, and Honing (2000)

propose a similar metric for beat tracking, where accuracy is calculated instead using

a Gaussian window around each annotated beat. Goto and Muraoka (1997) propose a

binary metric which is 1 if the beats are correctly tracked for at least 25% of the piece,

and 0 otherwise. P-score, introduced by McKinney, Moelants, Davies, and Klapuri

(2007), is the proportion of tracked beats which correctly match an annotated beat,

normalised by either the number of tracked beats or the number of annotated beats

(whichever is greater). Finally, Hainsworth (2003) describes metrics based on the

longest continuously tracked subsection of music. All of the above metrics are used

to some extent in beat tracking, and the MIREX Audio Beat Tracking task (MIREX,

2017a) uses all of them. In addition, evaluation is also often presented at twice and

half the annotated beat length, to handle models which may track a beat at the wrong

metrical level.

By comparison, the evaluation of metrical structure detection and alignment is far

less sophisticated. Recall that meter detection and alignment is the organisation of

116 Chapter 5. Joint Analysis

the beats of a given musical performance into a sequence of trees at the bar level, in

which each node represents a single note value. The structure of each of these trees is

directly related to the music’s time signature, where the head of each tree splits into

a number of nodes equal to the number of beats per bar, and each of these beat nodes

splits into a number of nodes equal to the number of sub-beats per beat. Thus, each

time signature uniquely describes a single metrical tree structure as defined by the

number of beats per bar and sub-beats per beat in that time signature. The most basic

evaluation is to simply report the proportion of musical excerpts for which the model

guesses the correct metrical structure and phase (such that each tree aligns correctly

with a single bar). Another approach is to simply report the proportion of musical

excerpts for which the model correctly classifies the meter as duple or triple (De Haas

& Volk, 2016). Both of these metrics are simplistic, and fail to take into account some

idea of partially correct metrical structure trees.

Temperley (2004) proposes a metric which takes into account the level on the met-

rical tree at which each note lies in order to capture some idea of partial correctness;

however, the fact that it is based on detected notes means that it would not be robust

to errors in multi-pitch detection and would violate our principle of disjoint penalties.

Two novel metrics have been proposed in this thesis: one for metronomically-aligned

music data (and thus not directly applicable) in Section 4.3.2.1, and one in Section

4.4.2.3 for use with live performance data. Since this last metric is based solely on bar,

beat, sub beat placement in time, it does not rely on any multi-pitch detection results

and thus does not violate our principle of disjoint penalties.

5.3.1.4 Note Value Detection

Note value detection is not a widely researched problem, and is related to a combina-

tion of note offset time as well as metrical alignment. Nakamura, Yoshii, and Dixon

(2017) describe two metrics for the task. One, error rate, is simply the percentage of

notes whose transcribed value is incorrect. The other, scale error, takes into account

the magnitude of the error as well (relative to the metrical grid), in log space such that

errors from long notes do not dominate the calculation.

However, since note values are reported relative to the underlying meter, and are

measured for each detected note, they violate our property of disjoint penalties and we

must design a new measure of note value detection accuracy for our metric.

5.3. Joint Evaluation 117

5.3.1.5 Harmonic Analysis

Harmonic analysis involves both key detection, a classification problem of identifying

one of twelve tonic notes, each with two possible modes (major or minor—alternate

mode detection has not been widely researched); and chord tracking, identifying a

sequence of chords and times given an audio recording. The possible chords to identify

range from simply identifying the correct root note, to determining major or minor,

identifying seventh chords, and even identifying different chord inversions.

The standard key detection evaluation, used both in the mir eval package (Raffel

et al., 2014) and the MIREX Audio Key Detection task (MIREX, 2017d), is to assign

a guess a score of 1.0 if it is the correct key, 0.5 if it is a perfect fifth higher than the

correct key, 0.3 if it is the relative major or minor of the correct key, 0.2 if it is the

parallel major or minor of the correct key, and 0.0 otherwise.

The standard chord tracking evaluation is chord symbol recall (CSR)—described

by Harte (2010), and used for the MIREX Audio Chord Estimation task (MIREX,

2017b)—which is defined as the proportion of the total duration of the annotated in-

put during which the annotated chord matches the ground truth chord. There can be

varying levels of specificity for what exactly constitutes a match, since different sets

of possible chords can be used as described above.

Regardless, since neither the described key detection evaluation nor CSR takes

into consideration the detected notes or the metrical structure in its calculation, they

can each be applied directly to the full AMT task without violating our property of

disjoint penalties.

5.3.1.6 Joint Metric

For the joint evaluation of AMT performance, Cogliati, Temperley, and Duan (2016)

present a system to transcribe MIDI input into a musical score (thus including errors

from typesetting), and evaluate it using five human evaluators. The evaluators were

asked to: “1) Rate the pitch notation with regard to the key signature and the spelling

of notes. 2) Rate the rhythmic notation with regard to the time signature, bar lines, and

rhythmic values. 3) Rate the notation with regard to stems, voicing, and placement of

notes on staves,” each on a scale of 1 to 10. Notice that the three questions roughly

correspond with four of our subsections above: 1) harmonic analysis, Section 5.3.1.5;

2) metrical alignment and note value detection, Sections 5.3.1.3 and 5.3.1.4; and 3)

voice separation, Section 5.3.1.2.

118 Chapter 5. Joint Analysis

Cogliati and Duan (2017) describe an automatic metric for the same task, similar

to string edit distance, taking into account the ordering of 12 different aspects of a

musical score: barlines, clefs, key signatures, time signatures, notes, note spelling, note

durations, stem directions, groupings, rests, rest duration, and staff assignment. While

it is a great step towards an automatic evaluation of AMT performance, it violates our

principle of disjoint penalties. A single mistake in metrical alignment can manifest

itself in the time signature, rest durations, note durations, and even additional notes

(tied notes are counted as separate objects in the metric).

It appears that both of the above metrics measure something slightly different from

what we want. They measure the readability of a score produced by an AMT system,

while we really want a metric which measures the accuracy of the analysis performed

by the AMT system, a slightly different task. To our knowledge, no metric exists

which measures the accuracy of the analysis performed by a complete AMT system in

the way we desire.

5.3.2 New Metric

Our proposed metric, MV 2H, draws from existing metrics where possible, though we

take care to ensure that our principle of disjoint penalties is not violated. Essentially,

we calculate a single score for each aspect of the transcription, and then combine them

all into the final joint metric.

5.3.2.1 Multi-pitch Detection

For multi-pitch detection, we use an F-measure very similar to the one by Bay et al.

(2009) described above, counting a detected note as a true positive if its detected pitch

(in semitones) is correct and its onset lies within 50 ms of the ground truth onset time.

All other detected notes are false positives, and any unmatched ground truth notes are

false negatives. Note offset time does not factor into our evaluation; rather, see Section

5.3.2.4 for a discussion on the related problem of note value detection.

5.3.2.2 Voice Separation

For voice separation, we use an F-measure very similar to the one from Section 3.2.3.3,

taking care not to violate our disjoint penalties principle. Specifically, we don’t want

to penalise any model in voice separation for multi-pitch detection errors.

5.3. Joint Evaluation 119

(a)

(b)

Figure 5.3: To illustrate the new voice separation metric, an example transcription of

the ground truth bar shown in 5.3a is given in 5.3b. Here, the connection between the

last two notes in the lower voice is considered a true positive, even though they are not

consecutive in the ground truth.

Recall that the F-measure is calculated as a binary classification problem where

for each ordered pair of notes, we must decide if they occur consecutively in the same

voice or not. To enforce the disjoint penalties principle, we change this definition

slightly. We first remove from both the ground truth voices and the detected voices

any notes which have not been matched as a true positive. Then, we perform the same

graph-based F-measure calculation with the reduced ground truth and detected voices.

As an illustration of this, see Figure 5.3. In the transcribed music, the last two notes

in the lower voice are both matched with a ground truth note (in pitch and onset time),

but are not immediately sequential in the ground truth voice. However, because the

intervening note was not correctly transcribed, the link between these two notes counts

as a true positive. This new F-measure calculation is equivalent to the standard voice

separation F-measure when multi-pitch detection is performed perfectly.

5.3.2.3 Metrical Alignment

For our metrical alignment metric, we will use the metrical F-measure proposed in

Section 4.4.2.3, where each detected metrical grouping is compared to the ground truth

metrical groupings and counted as a true positive if its beginning and end times each

120 Chapter 5. Joint Analysis

lie within 50 ms of a particular ground truth grouping.2 This metric does not violate

our principle of disjoint penalties since it is time-based rather than note-based.

5.3.2.4 Note Value Detection

It is difficult to disentangle note value detection from multi-pitch detection, voice sepa-

ration, and metrical alignment in order to include it in our evaluation without violating

the principle of disjoint penalties. Clearly, note value should only be regarded if the

note has been counted as a true positive in the multi-pitch detection evaluation. Less

obviously, we also disregard any detected note which is not followed in its hypoth-

esised voice by another detected note corresponding to the next note in the original

ground truth voice (not the reduced ground truth voice used for the voice separation

F-measure calculation). Additionally, note value depends directly on meter such that

any note value accuracy metric must measure note value relative to time rather than

relative to the underlying metrical grid.

Therefore, we define a note value score which measures only a subset of the de-

tected notes: those which both (1) correspond with a true positive multi-pitch detec-

tion; and (2) correspond with a true positive ground truth voice segment as described

in the previous paragraph. Each note which matches those two criteria is assigned a

score according to the accuracy of its normalised duration (that is, the duration corre-

sponding to its note value rather than its performed duration). Specifically, each note

is counted as correct and assigned a score of 1 if its normalised duration is within 100

ms of the normalised duration of the corresponding ground truth note.3 Otherwise, its

score is calculated as in Equation 5.1, where durgt is the ground truth note’s normalised

duration and durdet is the detected note’s normalised duration. This score is 1 when

the durations match exactly and scales linearly on both sides to a score of 0 for a note

with 0 duration or a note with twice the ground truth note’s duration. The overall note

value score is calculated as the arithmetic mean of the scores of those notes which are

assigned a score.

score = max
(

0,1−
|durgt−durdet |

durgt

)
(5.1)

Figure 5.4 illustrates this note value score. In particular, only those notes which

2We use a 50 ms threshold (here and elsewhere), rather than the more common 70 ms, because it
was shown by (Davies & Böck, 2014) that 50 ms corresponds more exactly with human judgement for
beat tracking.

3We use 100 ms here to allow for a 50 ms error in both onset and offset time.

5.3. Joint Evaluation 121

(a)

(b)

Figure 5.4: To illustrate the new note value metric, an example transcription of the

ground truth bar shown in 5.4a is given in 5.4b. Here, those notes which are assigned

a score of 1 are coloured in green, while those notes assigned a score less than 1 are

red. Black notes are not considered for the note value detection evaluation.

are coloured are considered for the note value score. Notice that the two C’s on the

downbeat are not considered due to errors in voice separation. Likewise, the last two

notes in the lower voice are also not considered due to voice separation errors, even

though they count as a true positives for the voice separation F-measure. The three

green notes would be assigned a score of 1, while the red note would be assigned a

score of around 0.5 (depending on exact timing), since its value duration is off by

exactly half of the ground truth note’s value duration. Thus the final note value score

would be the average of 1, 1, 1, and 0.5, or about 0.875.

5.3.2.5 Harmonic Analysis

For harmonic analysis, we use the standard key detection and CSR metrics described

above, as neither one violates the disjoint penalties principle since they are based on

time rather than notes or the metrical alignment. For our purposes, we take our set

of possible chords to include a major and minor version for each root note, but not

sevenths or inversions.

To combine the two into a single harmonic analysis score, we take the arithmetic

mean of the two values, since they are both on the range [0–1]. Models which only

perform one of the above tasks may simply use that task’s score as their harmonic

122 Chapter 5. Joint Analysis

analysis score.

5.3.2.6 Joint Metric

We now have five values to combine into a single number for our final joint metric:

the multi-pitch detection F-measure, the voice separation F-measure, the metrical F-

measure, the note value detection accuracy score, and the harmonic analysis mean. All

of these values are on the range [0–1] such that a value of 1 results from a perfect tran-

scription in that aspect. We consider three different approaches for their combination:

harmonic mean, geometric mean, and arithmetic mean.

The harmonic mean is most useful when there is potential for one of the values

involved to be significantly larger than the others, and thus dominate the overall result.

F-measure, for example, is the harmonic mean between precision and recall, and is

used so that models cannot receive a high F-measure by simply tuning their model to

have a very high recall or precision; rather, both recall and precision must be relatively

high in order for their harmonic mean to also be high. This is not relevant in our case

as there is no way for a model to tune itself towards one very high score at the expense

of the others as is the case with some binary classification problems.

The geometric mean is most useful when the values involved are on different scales.

Then, a given percent change in one of the values will result in the same change in mean

as the same percent change to another of the values. This property is not necessary for

us because all of our values lie on the same range.

Arithmetic mean, on the other hand, is a simple calculation that weights each of

the values involved equally. This property is desirable for us because, for a complete

transcription, all five aspects of an analysis must be correct. Furthermore, due to our

property of disjoint penalties, we have kept the five values involved disjoint, and a

model must fairly perform well on all aspects in order for its overall score to be high.

Therefore, for the final joint metric, MV 2H (from Multi-pitch detection, Voice

separation, Metrical alignment, note Value detection, and Harmonic analysis), we take

the arithmetic mean of the five previously calculated values. We also want the metric

to be usable no matter what subset of analyses is performed, for example, for models

which run on MIDI input and therefore do not perform multi-pitch detection. In these

cases, we advise using our metric and simply taking the arithmetic mean of only those

scores which correspond with analyses performed.

5.3. Joint Evaluation 123

(a) Ground truth

(b) Transcription 1

(c) Transcription 2

Figure 5.5: Two different example transcriptions of the first four bars of Bach’s Minuet

in G. The ground truth transcription is given in 5.5a, and the example transcriptions are

shown below. The chord progression is given beneath each staff.

5.3.3 Examples

To illustrate the effectiveness and appropriateness of our metric, we present in Fig-

ure 5.5 two example transcriptions of the first four bars of Bach’s Minuet in G, each

exhibiting different errors. Figure 5.5a shows the ground truth transcription (where

the chord progression is shown beneath the staff), and the example transcriptions are

shown below it.

Figure 5.5b shows an example transcription which is good in general, with just

a few mistakes, mostly related to the metrical alignment. First, for the multi-pitch

detection F-measure, we can see that the transcription has 20 true positives, 3 false

negatives (a G on the second beat in the first bar, a C on the second beat of the third

bar, and the final G in the fourth bar), and 0 false positives, resulting in an F-measure

of 0.93. For voice separation, this transcription is generally good, making a single bad

assignment in the second bar, resulting in 3 false positives (the connections to and from

the incorrect assignment, as well as the incorrect connection in the treble clef), 3 false

124 Chapter 5. Joint Analysis

negatives (the correct connections to and from the misclassified note, as well as the

correct connection in the bass clef), and a voice separation F-measure of 0.83. Notice

that the missed G in the upper voice in the treble clef of the first bar does not result in

a penalty for voice assignment due to our principle of disjoint penalties. For metrical

alignment, we can see that this transcription is notated in 6
8 time, correctly grouping all

sub beats (eighth notes) and bars, yielding 28 true positives, but incorrectly grouping

three sub beats together into dotted quarter note beats, yielding 8 false positives and 12

false negatives. This results in a metrical F-measure of 0.74. For note value detection,

14 notes are counted: all of the bass clef notes and all of the eighth notes in the first

bar, only the high D in the second bar, the low C and all of the eighth notes in the

third bar, and the high G and the low B in the fourth bar. Notice that the initial high

D isn’t counted because the next note in its voice has not been detected. Similarly,

neither the G on the second beat of the second bar nor any of the bass clef notes in the

second bar are counted due to voice separation errors. Of the 14 notes, 13 of them are

assigned the correct note value (even the first bass chord, since its incorrect typesetting

and the ties are related to the incorrect metrical alignment—the note value still ends at

the correct point in time). One note (the C in the bass clef on the downbeat of the third

bar) is assigned a value score of 0.5 (since its value duration is half of the correct value

duration). This results in a note value detection score of 0.96. The harmonic analysis

in this transcription is entirely correct, resulting in a harmonic score of 1.0. Thus, the

MV 2H of the first transcription is 0.89. This makes sense because the transcription is

quite good in general, but a few mistakes are made, the most glaring of which is the

metrical alignment (hence that is its lowest individual score).

Figure 5.5c shows another example transcription which is again good in general,

this time with a few more errors in multi-pitch detection, as well as a poor harmonic

analysis. For multi-pitch detection, it contains 17 true positives, 4 false positives, and 6

false negatives, resulting in an F-measure of 0.77. This number is 0.16 lower than that

the previous transcription’s corresponding F-measure, and this makes sense intuitively:

the first transcription does seem to have resulted from a more accurate multi-pitch de-

tection than the second. For voice separation, this second transcription contains no

errors. Some erroneous notes are placed into one voice or the other, but all of the

correctly detected notes are also correctly separated into voices, resulting in a perfect

voice separation F-measure of 1.0. Likewise the metrical alignment is performed per-

fectly, resulting in a metrical F-measure of 1.0. For note value detection, we look at

all of the true positive note detections except (1) the initial D on the downbeat of the

5.3. Joint Evaluation 125

Transcription 1 2

Multi-pitch 0.93 0.77

Voice 0.83 1.0
Meter 0.74 1.0
Value 0.96 1.0
Harmonic 1.0 0.5

MV 2H 0.89 0.85

Table 5.2: The resulting scores from each of the example transcriptions from Figure

5.5.

first bar, (2) the B in the bass clef of the first bar, (3) the C in the bass clef of the third

bar, and (4) the high F at the end of the third bar. (All of these exceptions are due

to missed note detections of the following note in each voice.) All of the remaining

notes have been assigned the correct value, resulting in a note value detection score

of 1.0. For the harmonic analysis, the model has incorrectly transcribed the excerpt in

D major, resulting in a key score of 0.5. Likewise, the model has incorrectly labelled

the chord progression as D-G-G-G, rather than G-G-C-G. Thus, it has transcribed the

correct chord for half of the transcription, resulting in a CSR of 0.5, and a harmonic

score of 0.5. The MV 2H of the second transcription is therefore 0.85: slightly worse

than the first transcription, but still good.

The scores of both transcriptions are summarised in Table 5.2, and intuitively, they

make sense. Both seem good overall, though they both contain errors. The first tran-

scription has an incorrectly notated meter (although its bars and sub beats still align

correctly) and a few other smaller mistakes related to multi-pitch detection, voice sepa-

ration, and note value detection. The second transcription, on the other hand, correctly

aligns the meter, and makes its only errors in its harmonic analysis (which is quite

poor), and in multi-pitch detection (it is worse than the first model in this regard).

Given these examples, for applications which need a good all-around transcription,

we would recommend the system which produced the first transcription. However,

applications which emphasise metrical structure detection or voice separation should

consider using the system which produced the second transcription instead.

We also present in Table 5.3 the results from the different joint versions of our

model. This table is essentially just a reproduction of Table 5.1 along with the added

joint metric. The joint metric in this case is simply the average of the two numbers

126 Chapter 5. Joint Analysis

Model Voice Meter Joint

Independent 94.34 56.51 75.43

Sequential 94.56 57.33 75.95
Joint 85.78 27.77 56.78

Table 5.3: The results of our joint model on both voice separation and metrical align-

ment, as well as our new joint evaluation, compared against those of our two baselines:

Independent, which runs each individual model entirely independently; and Sequential,

which runs both individual models in sequence rather than simultaneously.

reported individually, since the combination of voice separation and metrical detection

does not violate the principle of disjoint penalties.

5.4 Conclusion

In this chapter, we have evaluated running the two components of our music language

model—voice separation (see Chapter 3) and metrical alignment (see Chapter 4)—

jointly rather than independently as we did in the previous chapters.

We have shown that running the models sequentially leads to a small but notice-

able improvement in both voice separation and metrical alignment performance. This

suggests, as we have hypothesised earlier, that the components are able to inform and

improve each other when integrated properly. Furthermore, it demonstrates that our

eventual goal of a full music language model to be run jointly with a multi-pitch de-

tection model is a worthwhile one, and has the potential to add real value to the field

of AMT.

As future work moves towards this goal of a complete AMT system, an automatic,

standardised, quantitative metric for the task will become a necessity. To that end,

we have proposed a joint metric, MV 2H, which measures multi-pitch detection, voice

separation, metrical alignment, note value detection, and harmonic analysis and sum-

marises them in a single number. Our metric is based on the property of disjoint penal-

ties: that a model should not be penalised twice for errors which come from a single

mistake or misinterpretation. While our metric may not be the final standardised met-

ric used for the task, we believe that it should become part of the discussion, and the

that the principles that guided us through its creation should continue to be addressed

by any future proposed metrics. In future work, we will investigate whether a linear

5.4. Conclusion 127

combination of the five values involved, perhaps weighting some more strongly than

others, aligns more exactly with human judgements than the current arithmetic mean.

Future work on our joint model will concentrate on its simplification and integra-

tion. Specifically, the complexity of the model has proven to be a barrier to its joint

inference, requiring a beam size too large to be computationally feasible in a reason-

able amount of time. Smarter and more aggressive pruning of potential hypotheses

at each step, for example by calculating upper bound probability estimates for partial

metrical trees and using heuristics as in A* search, should bring the required beam size

down to a reasonable level, and future research will have that goal in mind.

Chapter 6

Conclusion

This thesis has argued for a new approach to language modelling for music based on

natural language processing (NLP) techniques, and the applicability of such a lan-

guage model design to the improvement of automatic music transcription (AMT) per-

formance. We began with a look at the performance of state-of-the-art AMT systems,

in particular their lack of significant progress in recent years, and argued that language

modelling could be the key to future progress. It has been shown before that music

and language exhibit similarities, and it is therefore natural to design a music language

model based on NLP techniques. This thesis has presented such a language model for

music analysis. While our proposed model is at times inspired by human cognition

(which is natural since humans currently outperform computers on many transcription

tasks), we do not present them as cognitive models of the human interpretation of mu-

sic. Our goal in this thesis is instead for them to be used to improve AMT performance.

Chapter 2 offered an overview of existing work on multi-pitch detection, the first

step in the process of transcribing audio data, which involves converting an input audio

file into a time frequency format such as a piano roll or a MIDI file. While the subject

of multi-pitch detection is not directly relevant to this thesis, a strong knowledge of

the field does help to give context to the remaining chapters. In particular, it directs us

towards the creation of certain principles which should guide the creation of any music

language model. In particular, we have learned that a music language model should (1)

be probabilistic; (2) not use any information besides that which is output directly by a

multi-pitch detection system (note pitch and timing information); (3) have the ability

to run directly on live performance data without any preprocessing or data cleanup;

and (4) be incremental, working from the beginning of the song to the end. These four

principles have guided us through the remaining chapters during the creation of our

129

130 Chapter 6. Conclusion

music language model.

Chapter 3 presented a model for voice separation and assignment, the process of

taking an input polyphonic stream of notes (which may contain many simultaneous

notes) and separating those notes into labelled monophonic streams of notes (which

contain only one note at a time). Voice separation is often used as a preprocessing step

for further musical analysis. We showed that our model achieves state-of-the-art voice

separation performance on datasets of both metronomic and live performance MIDI,

despite requiring no a priori information or alignment for the input piece (unlike many

of the models we compared against). Thus, our approach is both the most accurate,

but also able to be run directly on any input stream of notes, including live perfor-

mance. We also extended this model, integrating it with a multi-pitch detection model

into a system for transcription and voice assignment of four-part a cappella recordings.

Notably, our combined system sees a significant improvement over a version of the

system without the voice separation component, and achieves state-of-the-art results

for both multi-pitch detection and voice assignment. This illustrates that voice assign-

ment is not only useful as a preprocessing step for more complicated music analysis

tasks. Rather, it is able to provide real value as a music language model itself.

Chapter 4 proposed a model for meter detection and alignment, the process of

aligning an input musical performance with repeating metrical tree structures with one

tree per bar. Essentially, our model aligns the notes of the performance with a time

signature and its pattern of bars, beats, and sub beats. The model consists of two

components. The first, a lexicalised probabilistic context-free grammar (LPCFG), can

be used to perform metrical alignment directly on metronomic MIDI data which is

aligned with some pulse (for example, 32nd notes) by creating rhythmic parse trees.

The basic idea of the grammar is to detect strong and weak beats and sub beats ac-

cording to rhythmic stress of the input notes, and then align that stress pattern with a

particular repeating metrical tree structure. A standard PCFG makes a strong indepen-

dence assumption that the rhythmic stress which occurs in one position in the tree does

not affect the stress at any other position in the tree. Lexicalisation, a technique used

in natural language parsing, breaks this assumption, allowing the grammar to draw

from a wider context when detecting rhythmic stress. We showed that the LPCFG

significantly outperforms a standard PCFG, thus demonstrating that musical rhythms

display long-distance dependencies similar to those found in natural language. We

combined this LPCFG with an HMM to create an incremental, probabilistic model for

metrical alignment of live performance data which requires no information a priori

131

besides a list of note pitches and timings. We also proposed new metrics for metrical

alignment of both metronomic and live performance MIDI which take into account

some idea of partial correctness. Using the new metrics, we showed that our combined

model achieves state-of-the-art metrical alignment performance on both types of data.

This again shows that our approach to metrical alignment using NLP-inspired parsing

methods for language has merit, and that music exhibits many of the same patterns and

structures as natural language.

Finally, Chapter 5 investigated the joint modelling and analysis of music. First,

we integrated our voice separation model from Chapter 3 with our metrical alignment

model from Chapter 4 into a single joint model to perform both tasks. We showed that

running the two models sequentially and taking the most probable combined result

results in improved performance compared with running each model independently

and taking the most probable result at each step. This result demonstrates that each

aspect of the musical analysis is able to inform and improve the other, suggesting

that a joint analysis of music (even incorporating multi-pitch detection where possi-

ble) should be preferred to independent analyses of each aspect. To that end, we also

proposed MV 2H, a new automatic, quantitative metric for a complete transcription

of polyphonic music consisting of multi-pitch detection, voice separation, metrical

alignment, note value detection, and harmonic analysis. Our new metric is based on

the property of double jeopardy: that a model should not be penalised twice for two

transcription errors which both stem from the same mistake. We believe that double

jeopardy is an important property and that any metric which becomes standard for the

task should take it into consideration.

The contribution of this thesis is to show that a music language model based on

NLP techniques is able to model music well enough to offer improvement to AMT

performance for multi-pitch detection, voice separation, and metrical alignment. This

outcome suggests a connection between the structures of music and language. The

models used here were not only able to achieve state-of-the-art performance on their

own tasks, but they were also able to improve both multi-pitch detection accuracy (a

major component of AMT), and even improve each other’s performance when run

jointly. The complexity of the models does not allow the full model to be run jointly

along with a multi-pitch detection program, but its accuracy has shown that with a

more sophisticated integration procedure, such a joint model should improve overall

transcription performance. To that end, this thesis has also proposed a new automatic,

quantitative metric for the task of a full transcription and analysis of music, a necessary

132 Chapter 6. Conclusion

aspect of a field which can be expected to be the subject of much research in the years

to come.

The models developed as a part of this work take as input an unlabelled, metrically

unaligned stream of note pitches, onsets, and offsets, and give the stream structure.

They separate the input into more manageable monophonic voices, and align a metrical

structure to the notes. Such analysis is applicable to the field of music information

retrieval both directly, for transcribing MIDI performance, and indirectly, as features

for downstream applications such as query-by-tapping, query-by-humming, or even

genre detection and music recommendation. Furthermore, we have shown that a music

language model such as our voice separation model can aid in multi-pitch detection

from audio, and it is therefore reasonable to expect that our combined model could be

an even better music language model for multi-pitch detection—and even become the

starting point for the creation of a complete music transcription system: from audio

recording to musical score.

References

Bay, M., Ehmann, A. F., Beauchamp, J. W., Smaragdis, P., & Downie, J. S. (2012).

Second fiddle is important too: Pitch tracking individual voices in polyphonic

music. In International Society of Music Information Retrieval Conference (IS-

MIR) (pp. 319–324).

Bay, M., Ehmann, A. F., & Downie, J. S. (2009). Evaluation of multiple-F0 estimation

and tracking systems. In ISMIR (pp. 315–320).

Bello, J. P., Daudet, L., & Sandler, M. B. (2006, November). Automatic piano

transcription using frequency and time-domain information. IEEE Transac-

tions on Audio, Speech and Language Processing, 14(6), 2242–2251. doi:

10.1109/TASL.2006.872609

Benetos, E., Badeau, R., Weyde, T., & Richard, G. (2014). Template adaptation for

improving automatic music transcription. In ISMIR (pp. 175–180).

Benetos, E., & Dixon, S. (2012, December). A shift-invariant latent variable model

for automatic music transcription. Computer Music Journal, 36(4), 81–94. doi:

10.1162/COMJ a 00146

Benetos, E., & Dixon, S. (2013). Multiple-instrument polyphonic music transcrip-

tion using a temporally constrained shift-invariant model. The Journal of the

Acoustical Society of America, 133(3), 1727-1741.

Benetos, E., Dixon, S., Giannoulis, D., Kirchhoff, H., & Klapuri, A. (2013, July). Au-

tomatic music transcription: challenges and future directions. Journal of Intelli-

gent Information Systems, 41(3), 407–434. doi: 10.1007/s10844-013-0258-3

Benetos, E., & Holzapfel, A. (2015). Automatic transcription of turkish microtonal

music. The Journal of the Acoustical Society of America, 138(4), 2118–2130.

Benetos, E., & Weyde, T. (2015). An efficient temporally-constrained probabilistic

model for multiple-instrument music transcription. In ISMIR (pp. 701–707).

Berg-Kirkpatrick, T., Andreas, J., & Klein, D. (2014). Unsupervised transcription

of piano music. In Advances in Neural Information Processing Systems (pp.

133

134 References

1538–1546).

Bernstein, L. (1976). The unanswered question: Six talks at harvard (Vol. 33). Harvard

University Press.

Birmingham, W., Dannenberg, R., & Pardo, B. (2006). Query by humming with the

vocalsearch system. Communications of the ACM, 49(8), 49–52.

Bittner, R. M., McFee, B., Salamon, J., Li, P., & Bello, J. P. (2017). Deep salience

representations for F0 estimation in polyphonic music. In ISMIR (pp. 63–70).

Böck, S., & Schedl, M. (2012, March). Polyphonic piano note transcription with

recurrent neural networks. In IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP) (pp. 121–124). IEEE. doi: 10.1109/

ICASSP.2012.6287832

Bogdanov, D., Wack, N., Gómez, E., Gulati, S., Herrera, P., Mayor, O., . . . Serra, X.

(2013). Essentia: An audio analysis library for music information retrieval. In

ISMIR (pp. 493–498).

Bohak, C., & Marolt, M. (2016). Transcription of polyphonic vocal music with a

repetitive melodic structure. Journal of the Audio Engineering Society, 64(9),

664–672.

Boulanger-Lewandowski, N., Bengio, Y., & Vincent, P. (2013, May). High-

dimensional sequence transduction. In ICASSP (pp. 3178–3182). IEEE. doi:

10.1109/ICASSP.2013.6638244

Brown, J. C. (1991, January). Calculation of a constant Q spectral transform. J.

Acoustical Society of America, 89(1), 425-434.

Brown, J. C. (1993). Determination of the meter of musical scores by autocorrelation.

The Journal of the Acoustical Society of America, 94(4), 1953–1957. doi: 10

.1121/1.407518

Bruderer, M., McKinney, M., & Kohlrausch, A. (2012). Perceptual evaluation of

musicological cues for automatic song segmentation. Psychomusicology: Music,

Mind and Brain, 22(1), 3.

Cambouropoulos, E. (2008, September). Voice and stream: Perceptual and compu-

tational modeling of voice separation. Music Perception, 26(1), 75–94. doi:

10.1525/mp.2008.26.1.75

Cemgil, A. T., Kappen, B., Desain, P., & Honing, H. (2000, December). On tempo

tracking: Tempogram representation and kalman filtering. Journal of New Music

Research, 29(4), 259–273. doi: 10.1080/09298210008565462

Chew, E., & Wu, X. (2004). Separating voices in polyphonic music: A contig mapping

References 135

approach. In Computer music modeling and retrieval (pp. 1–20). doi: 10.1007/

b105507

Cogliati, A., & Duan, Z. (2017). A metric for music notation transcription accuracy.

In ISMIR (pp. 407–413).

Cogliati, A., Temperley, D., & Duan, Z. (2016). Transcribing human piano perfor-

mances into music notation. In ISMIR (pp. 758–764).

Davies, M. E. P., & Böck, S. (2014). Evaluating the evaluation measures for beat

tracking. In ISMIR (pp. 637–642).

Davies, M. E. P., Degara, N., & Plumbley, M. D. (2009). Evaluation methods for mu-

sical audio beat tracking algorithms. Queen Mary University of London, Centre

for Digital Music, Technical Report C4DM-TR-09-06.

De Haas, W. B., & Volk, A. (2016). Meter detection in symbolic music using inner

metric analysis. In ISMIR (pp. 441–447).

de A. Scatolini, C., Richard, G., & Fuentes, B. (2015, April). Multipitch estimation

using a PLCA-based model: Impact of partial user annotation. In ICASSP (pp.

186–190).

de León, P., & Inesta, J. (2007). Pattern recognition approach for music style iden-

tification using shallow statistical descriptors. IEEE Transactions on Systems,

Man, and Cybernetics, Part C: Applications and Reviews, 37(2), 248–257.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from

incomplete data via the EM algorithm. J. Royal Statistical Society, 39(1), 1–38.

de Valk, R. (2015). Structuring lute tablature and MIDI data: Machine learning mod-

els for voice separation in symbolic music representations (Unpublished doc-

toral dissertation). City University of London.

Dixon, S. (2001, March). Automatic extraction of tempo and beat from expressive

performances. Journal of New Music Research, 30(1), 39–58. doi: 10.1076/

jnmr.30.1.39.7119

Dixon, S. (2007, March). Evaluation of the audio beat tracking system beatroot. Jour-

nal of New Music Research, 36(1), 39–50. doi: 10.1080/09298210701653310

Duan, Z., Han, J., & Pardo, B. (2014, January). Multi-pitch streaming of harmonic

sound mixtures. IEEE/ACM Transactions on Audio, Speech, and Language Pro-

cessing, 22(1), 138–150.

Duane, B., & Pardo, B. (2009). Streaming from MIDI using constraint satisfaction

optimization and sequence alignment. In International Computer Music Con-

ference (ICMC) (pp. 1–8).

136 References

Eck, D., & Casagrande, N. (2005). Finding meter in music using an autocorrelation

phase matrix and shannon entropy. In ISMIR (pp. 504–509).

Elowsson, A., & Friberg, A. (2014). Polyphonic transcription with deep layered

learning. In MIREX. Retrieved from http://www.music-ir.org/mirex/

abstracts/2014/EF1.pdf

Fouloulis, T., Pikrakis, A., & Cambouropoulos, E. (2013). Traditional asymmetric

rhythms: A refined model of meter induction based on asymmetric meter tem-

plates. In Proceedings of the third international workshop on folk music analysis

(pp. 28–32).

Fuentes, B., Badeau, R., & Richard, G. (2012, August). Blind harmonic adaptive de-

composition applied to supervised source separation. In European Signal Pro-

cessing Conference (EUSIPCO) (pp. 2654–2658).

Fuentes, B., Badeau, R., & Richard, G. (2014, September). Controlling the conver-

gence rate to help parameter estimation in a PLCA-based model. In (EUSIPCO)

(p. 626-630).

Giannoulis, D., Benetos, E., Klapuri, A., & Plumbley, M. D. (2014). Improving instru-

ment recognition in polyphonic music through system integration. In ICASSP

(pp. 5222–5226).

Good, I. J. (1953). The population frequencies of species and the estimation of popu-

lation parameters. Biometrika, 237–264.

Goto, M. (2004). A real-time music-scene-description system: Predominant-F0 esti-

mation for detecting melody and bass lines in real-world audio signals. Speech

Communication, 43(4), 311–329.

Goto, M., Hashiguchi, H., Nishimura, T., & Oka, R. (2004). RWC music database:

Music genre database and musical instrument sound database. In ISMIR (pp.

229–230).

Goto, M., & Muraoka, Y. (1997). Issues in evaluating beat tracking systems. In

Workshop on issues in AI and music (pp. 9–16).

Gould, E. (2011). Behind bars : the definitive guide to music notation. Faber Music.

Granroth-Wilding, M., & Steedman, M. (2014, June). A robust parser-interpreter for

jazz chord sequences. Journal of New Music Research, 43(4), 355–374.

Gray, P., & Bunescu, R. (2016). A neural greedy model for voice separation in sym-

bolic music. In ISMIR (pp. 782–788).

Grindlay, G., & Ellis, D. P. W. (2011, October). Transcribing multi-instrument poly-

phonic music with hierarchical eigeninstruments. IEEE Journal on Selected

References 137

Topics in Signal Processing, 5(6), 1159-1169.

Guiomard-Kagan, N., Giraud, M., Groult, R., & Levé, F. (2016). Improving voice

separation by better connecting contigs. In ISMIR (pp. 164–170).

Hainsworth, S. W. (2003). Techniques for the automated analysis of musical audio

(Unpublished doctoral dissertation). University of Cambridge.

Hanna, P., & Robine, M. (2009). Query by tapping system based on alignment algo-

rithm. In ICASSP (pp. 1881–1884).

Harte, C. (2010). Towards automatic extraction of harmony information from music

signals (Unpublished doctoral dissertation). Queen Mary University of London.

Hashida, M., Matsui, T., & Katayose, H. (2008). A new music database describing

deviation information of performance expressions. ISMIR, 489–494.

Hsu, J.-L., Liu, C.-C., & Chen, A. L. P. (2001). Discovering nontrivial repeating

patterns in music data. IEEE Transactions on Multimedia, 3(3), 311–325. doi:

10.1109/6046.944475

Huron, D. (2001, September). Tone and voice: A derivation of the rules of voice-

leading from perceptual principles. Music Perception, 19(1), 1–64.

Ishigaki, A., Matsubara, M., & Saito, H. (2011). Prioritized contig combining to seg-

regate voices in polyphonic music. In Sound and Music Computing Conference

(SMC) (pp. 58–64).

Jordanous, A. (2008, August). Voice separation in polyphonic music: A data-driven

approach. In ICMC.

Jurafsky, D., & Martin, J. H. (2000). Speech and language processing. International

Edition.

Kameoka, H., Nakano, M., Ochiai, K., Imoto, Y., Kashino, K., & Sagayama, S. (2012).

Constrained and regularized variants of non-negative matrix factorization incor-

porating music-specific constraints. In ICASSP (pp. 5365–5368).

Kameoka, H., Nishimoto, T., & Sagayama, S. (2007, March). A multipitch analyzer

based on harmonic temporal structured clustering. IEEE Transactions on Audio,

Speech and Language Processing, 15(3), 982–994.

Karydis, I., Nanopoulos, A., Papadopoulos, A., Cambouropoulos, E., & Manolopou-

los, Y. (2007). Horizontal and vertical integration/segregation in auditory

streaming: a voice separation algorithm for symbolic musical data. In SMC

(pp. 299–306).

Kelz, R., Dorfer, M., Korzeniowski, F., Böck, S., Arzt, A., & Widmer, G. (2016). On

the potential of simple framewise approaches to piano transcription. In ISMIR

138 References

(pp. 475–481).

Kilian, J. (2004). Inferring score level musical information from low-level musical

data (Unpublished doctoral dissertation). TU Darmstadt.

Kilian, J., & Hoos, H. (2002). Voice separation—a local optimization approach. In

ISMIR.

Kirchhoff, H., Dixon, S., & Klapuri, A. (2013). Missing template estimation for

user-assisted music transcription. In ICASSP (pp. 26–30).

Kirlin, P., & Utgoff, P. (2005). VOISE: Learning to segregate voices in explicit and

implicit polyphony. In ISMIR (pp. 552–557).

Klapuri, A. (2005). A perceptually motivated multiple-F0 estimation method. In

IEEE Workshop on Applications of Signal Processing to Audio and Acoustics

(pp. 291–294). IEEE. doi: 10.1109/ASPAA.2005.1540227

Klapuri, A. (2006). Multiple fundamental frequency estimation by summing harmonic

amplitudes. In ISMIR (pp. 216–221).

Lee, C. (1991, May). The perception of metrical structure: Experimental evidence and

a new model. In P. Howell, R. West, & I. Cross (Eds.), Representing musical

structure (pp. 59–128). Academic Press. doi: 10.1121/1.2024471

Lee, D. D., & Seung, H. S. (1999, October). Learning the parts of objects by non-

negative matrix factorization. Nature, 401, 788–791.

Lerdahl, F., & Jackendoff, R. S. (1985). A generative theory of tonal music. MIT

press.

Longuet-Higgins, H. C. (1972). The language of music. (Unpublished manuscript)

Longuet-Higgins, H. C., & Lee, C. S. (1982). The perception of musical rhythms.

Perception, 11(2), 115–128. doi: 10.1068/p110115

Longuet-Higgins, H. C., & Steedman, M. (1971). On interpreting Bach. Machine

Intelligence, 6, 221–241.

Madsen, S. T., & Widmer, G. (2006). Separating voices in MIDI. ISMIR, 57–60.

Mauch, M., & Dixon, S. (2014). PYIN: A fundamental frequency estimator using

probabilistic threshold distributions. In ICASSP (pp. 659–663).

McKinney, M. F., Moelants, D., Davies, M. E. P., & Klapuri, A. (2007, March). Eval-

uation of audio beat tracking and music tempo extraction algorithms. Journal of

New Music Research, 36(1), 1–16. doi: 10.1080/09298210701653252

McLeod, A., Schramm, R., Steedman, M., & Benetos, E. (2017). Automatic Tran-

scription of Polyphonic Vocal Music. Applied Sciences, 7(12).

McLeod, A., & Steedman, M. (2016, January). HMM-based voice separation of MIDI

References 139

performance. Journal of New Music Research, 45(1), 17–26.

McLeod, A., & Steedman, M. (2017). Meter detection in symbolic music using a

lexicalized PCFG. In SMC (pp. 373–379).

McLeod, A., & Steedman, M. (2018a). Evaluating automatic polyphonic music tran-

scription. In ISMIR.

McLeod, A., & Steedman, M. (2018b). Meter detection and alignment of MIDI per-

formance. In ISMIR.

Meudic, B. (2002). Automatic meter extraction from MIDI files. In Journées

d’informatique musicale.

Meyer, L. B. (1956). Emotion and meaning in music. University of Chicago Press.

MIREX. (2017a). Audio beat tracking. http://www.music-ir.org/mirex/

wiki/2017:Audio\ Beat\ Tracking. (Accessed: 2017-07-18)

MIREX. (2017b). Audio chord estimation. http://www.music-ir.org/

mirex/wiki/2017:Audio\ Chord\ Estimation. (Accessed: 2017-07-18)

MIREX. (2017c). Audio downbeat estimation. http://www.music-ir.org/

mirex/wiki/2017:Audio\ Downbeat\ Estimation. (Accessed: 2017-07-

18)

MIREX. (2017d). Audio key detection. http://www.music-ir.org/mirex/

wiki/2017:Audio\ Key\ Detection. (Accessed: 2017-07-18)

MIREX. (2017e). Multiple fundamental frequency estimation & tracking.

http://www.music-ir.org/mirex/wiki/2017:Multiple\ Fundamental\

Frequency\ Estimation\ \%26\ Tracking. (Accessed: 2017-07-18)

Mysore, G. J., & Smaragdis, P. (2009). Relative pitch estimation of multiple instru-

ments. In ICASSP (pp. 313–316).

Nakamura, E., Yoshii, K., & Dixon, S. (2017, September). Note value recognition

for piano transcription using markov random fields. IEEE/ACM Transactions on

Audio, Speech, and Language Processing, 25(9), 1846–1858.

Nakamura, E., Yoshii, K., & Sagayama, S. (2016). Rhythm transcription of polyphonic

MIDI performances based on a merged-output HMM for multiple voices. In

SMC (pp. 338–343).

O’Hanlon, K., Nagano, H., Keriven, N., & Plumbley, M. D. (2016, March). Non-

negative group sparsity with subspace note modelling for polyphonic transcrip-

tion. IEEE/ACM Transactions on Audio, Speech, and Language Processing,

24(3), 530-542. doi: 10.1109/TASLP.2016.2515514

Papadopoulos, H., & Peeters, G. (2011, January). Joint estimation of chords and

140 References

downbeats from an audio signal. IEEE Transactions on Audio, Speech, and

Language Processing, 19(1), 138–152. doi: 10.1109/TASL.2010.2045236

Pertusa, A., & Iñesta, J. M. (2012). Efficient methods for joint estimation of multiple

fundamental frequencies in music signals. EURASIP Journal on Advances in

Signal Processing.

Peters, G., Cukierman, D., Anthony, C., & Schwartz, M. (2006). Online music search

by tapping. In Ambient intelligence in everyday life (pp. 178–197). Springer.

Poliner, G. E., & Ellis, D. P. W. (2007). A discriminative model for polyphonic piano

transcription. EURASIP Journal on Advances in Signal Processing, 2007(1),

154–162. doi: 10.1155/2007/48317

Raffel, C., Mcfee, B., Humphrey, E. J., Salamon, J., Nieto, O., Liang, D., . . .

Humphrey, E. J. (2014). mir eval: A transparent implementation of common

MIR metrics. In ISMIR.

Rohrmeier, M. (2011, March). Towards a generative syntax of tonal harmony. Journal

of Mathematics and Music, 5(1), 35–53.

Ryynanen, M. P., & Klapuri, A. (2005, October). Polyphonic music transcription using

note event modeling. In Ieee workshop on applications of signal processing to

audio and acoustics, 2005. (p. 319-322). doi: 10.1109/ASPAA.2005.1540233

Ryynanen, M. P., & Klapuri, A. (2008). Query by humming of MIDI and audio using

locality sensitive hashing. In ICASSP (pp. 2249–2252).

Salamon, J., & Gomez, E. (2012, August). Melody extraction from polyphonic music

signals using pitch contour characteristics. IEEE Transactions on Audio, Speech,

and Language Processing, 20(6), 1759–1770.

Schörkhuber, C., Klapuri, A., Holighaus, N., & Dörfler, M. (2014, January). A Matlab

toolbox for efficient perfect reconstruction time-frequency transforms with log-

frequency resolution. In AES International Conference on Semantic Audio.

Schramm, R., & Benetos, E. (2017, June). Automatic transcription of a cappella

recordings from multiple singers. In AES International Conference on Semantic

Audio.

Schramm, R., McLeod, A., Steedman, M., & Benetos, E. (2017). Multi-pitch detection

and voice assignment for a cappella recordings of multiple singers. In ISMIR (pp.

552–559).

Shashanka, M., Raj, B., & Smaragdis, P. (2008). Probabilistic latent variable models

as nonnegative factorizations. Computational Intelligence and Neuroscience.

(Article ID 947438)

References 141

Sigtia, S., Benetos, E., & Dixon, S. (2016, May). An end-to-end neural network

for polyphonic piano music transcription. IEEE/ACM Transactions on Audio,

Speech, and Language Processing, 24(5), 927–939. doi: 10.1109/TASLP.2016

.2533858

Spiro, N. (2002). Combining grammar-based and memory-based models of perception

of time signature and phase. In Music and artificial intelligence (pp. 183–194).

Springer Berlin Heidelberg. doi: 10.1007/3-540-45722-4\ 17

Steedman, M. (1977, January). The perception of musical rhythm and metre. Percep-

tion, 6(5), 555–69.

Steedman, M. (1996). The blues and the abstract truth: Music and mental models.

Mental models in cognitive science, 305–318.

Takeda, H., Nishimoto, T., & Sagayama, S. (2004). Rhythm and tempo recognition of

music performance from a probabilistic approach. In ISMIR.

Takeda, H., Nishimoto, T., & Sagayama, S. (2007). Rhythm and tempo analysis toward

automatic music transcription. In ICASSP (pp. 1317–1320). IEEE.

Temperley, D. (2004, September). An evaluation system for metrical models. Com-

puter Music Journal, 28(3), 28–44. doi: 10.1162/0148926041790621

Temperley, D. (2007). Music and probability. The MIT Press.

Temperley, D. (2008, February). A probabilistic model of melody perception. Cogni-

tive Science, 32(2), 418–444.

Temperley, D. (2009, March). A unified probabilistic model for polyphonic mu-

sic analysis. Journal of New Music Research, 38(1), 3–18. doi: 10.1080/

09298210902928495

Thickstun, J., Harchaoui, Z., Foster, D., & Kakade, S. M. (2017). MIREX 2017: Fre-

quency Domain Convolutions for Multiple F0 Estimation. In MIREX. Retrieved

from http://www.music-ir.org/mirex/abstracts/2017/THK1.pdf

Thickstun, J., Harchaoui, Z., & Kakade, S. (2017). Learning features of music from

scratch. In International Conference on Learning Representations.

Toiviainen, P., & Eerola, T. (2006). Autocorrelation in meter induction: The role

of accent structure. The Journal of the Acoustical Society of America, 119(2),

1164.

Tymoczko, D. (2008, March). Scale theory, serial theory and voice leading. Music

Analysis, 27(1), 1–49.

Valero-Mas, J. J., Benetos, E., & Iñesta, J. M. (2016). Classification-based note track-

ing for automatic music transcription. In Proceedings of the 9th machine learn-

142 References

ing and music workshop.

van der Weij, B. (2012). Subdivision-based parsing of expressively performed rhythms

(Unpublished master’s thesis). University of Edinburgh.

Vincent, E., Bertin, N., & Badeau, R. (2010, March). Adaptive harmonic spectral de-

composition for multiple pitch estimation. IEEE Transactions on Audio, Speech,

and Language Processing, 18(3), 528–537. doi: 10.1109/TASL.2009.2034186

Viterbi, A. (1967). Error bounds for convolutional codes and an asymptotically op-

timum decoding algorithm. IEEE Transactions on Information Theory, 13(2),

260–269.

Volk, A. (2008, December). The study of syncopation using inner metric analysis:

Linking theoretical and experimental analysis of metre in music. Journal of

New Music Research, 37(4), 259–273.

Volk, A., & de Haas, W. B. (2013). A corpus-based study on ragtime syncopation.

ISMIR, 163–168.

Weninger, F., Kirst, C., Schuller, B., & Bungartz, H.-J. (2013, May). A discriminative

approach to polyphonic piano note transcription using supervised non-negative

matrix factorization. In ICASSP (pp. 6–10). IEEE. doi: 10.1109/ICASSP.2013

.6637598

Whiteley, N., Cemgil, A. T., & Godsill, S. (2006). Bayesian modelling of temporal

structure in musical audio. In ISMIR (pp. 29–34).

Yeh, C. (2008). Multiple fundamental frequency estimation of polyphonic recordings

(Unpublished doctoral dissertation). Université Lille 1.

Young, S. (1996, September). A review of large-vocabulary continuous-speech. IEEE

Signal Processing Magazine, 13(5), 45-57.

