Musical Meter Detection Using Context-Free Grammars

Andrew McLeod and Mark Steedman

1. Introduction	4. Results
 Meter identification is the organisation of the beats of a given musical performance into a metrical structure, shown in Figure 1. The metrical structure is aligned in phase with the underlying musical performance so that 	 4.1 Metric Not a binary decision, need some idea of partial correctness.
• We show that using a probabilistic context-free grammar (PCEG) to model the rhythmic	

• We also show that using a **lexicalized PCFG** (LPCFG) improves performance further, as it can model the rhythmic dependencies found in music.

structure of a musical piece can aid in musical meter detection.

Figure 1: The metrical structure of a 4/4 bar.

2. Existing Work

 Most existing work finds only one level of the metrical structure, but does not build the full tree.

• Steedman (1977) builds the tree structure from the bottom up, deterministically.

• Our goal is to determine the structure probabilistically.

3. Proposed Method

3.1 PCFG

Figure 4: Evaluation of a **2**/**4** structure (left) and a **6**/**8** structure (right), given that the correct structure is **4**/**4** (Figure 1).

4.2 Evaluation

Method	Fugues			Inventions			
	Ρ	R	F1	Ρ	R	F1	
4/4	0.47	0.44	0.45	0.58	0.58	0.58	
PCFG	0.64	0.61	0.63	0.63	0.60	0.61	
LPCFG	0.85	0.81	0.83	0.66	0.64	0.65	

Table 1: Evaluation results showing that the grammars are learning the syntactic structure of the music.

 $M_{2,3}$

 B_3

 $S \to M_{b,s}$ $M_{b,s} \to B_s \dots B_s \text{ (b times)}$ $B_s \to SB \dots SB \text{ (s times)} \mid r$ $SB \to r$

• b = Beats per measure

• s =Sub beats per beat

J. SB SB SB | | | | J J J Figure 2: The tree structure of a 6/8 bar with the rhythm J. J]].

 B_3

 $P(B_3 \to SB \ SB \ SB) = p(SB \ SB \ SB \ B \ | \ B_3, M_{2,3})$

3.2 LPCFG

• PCFGs make a strong assumption of independence which is not true.

• Lexicalization assigns a head to each non-terminal node, to model dependence.

• Each head (*l*; *o*) represents the most important note beneath that node.

-l = Note length-o = Note onset

Figure 5: The percentage of pieces from each corpus whose structure each method gets completely correct (3 TPs), mostly correct (2 TPs), mostly incorrect (1 TP), and completely incorrect (0 TPs).

	Fugues				Inventions			
Meter	#	P	R	F1	#	P	R	F1
6/X	4	0.58	0.58	0.58	0			_
3/X	7	0.57	0.57	0.57	5	0.60	0.60	0.60
2/X	9	0.92	0.85	0.89	0		—	_
4/X	26	0.92	0.88	0.90	8	0.71	0.71	0.71
All	48	0.85	0.81	0.83	15	0.66	0.64	0.65

Table 2: Precision, recall, and F1 for each methods running on each corpus, divided by time signature, where # > 1. As the amount of training data increases, performance increases as well.

5. Conclusion

• Each *B* or *SB* node is also assigned a strength, based on its siblings' heads:

-S =Strong -E =Even -W =Weak

Figure 3: The tree from Figure 2, now lexicalized.

 $P(B_{3,W}(\frac{1}{3};0) \to SB_E(1;0) \ SB_E(1;0) \ SB_E(1;0)) \approx p(SB_E \ SB_E \ SB_E \ B_{3,W}(\frac{1}{3};0), M_{2,3}) * p((1;0) \mid SB_E, (\frac{1}{3};0), M_{2,3})^3$

(2)

(1)

• PCFGs show promise in understanding the syntactic structure of music.

• Lexicalization improves performance further, capturing structural dependencies.

• Performance increases as more training data is used, and good performance can be had with a limited amount of training data.

References

M J Steedman. The perception of musical rhythm and metre. *Perception*, 6(5):555–69, January 1977.