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ABSTRACT

Chord sequence prediction is a well-studied task in mu-
sic information retrieval that involves predicting the next
chord given the sequence of previous chords. It is of practi-
cal interest as a part of models for tasks such as chord tran-
scription and automatic accompaniment. Less studied is
the interaction between the chord sequence and additional
information encoded in the melody. This study investi-
gates whether a long short-term memory network (LSTM)
that jointly considers the previous chords and melody notes
can achieve higher chord-prediction accuracy than a base-
line LSTM that uses only chord progressions as input. The
models are trained and evaluated on the Weimar Jazz Data-
base, which comprises transcriptions of melody improvi-
sations over 456 Jazz standards. The results show that
the inclusion of melody information significantly improves
the chord-prediction accuracy, particularly for rare chords.
Qualitative and quantitative investigations of the models’
predictions suggest that our model benefits most from me-
lody information in two cases. First, the melody model
performs much better in the absence of melody, suggesting
that this lack of melody is itself informative. Second, after
melody notes that imply rare chords (e.g., notes that oc-
cur in diminished or half-diminished chords), the model’s
performance on those rare chords improves.

1. INTRODUCTION

Harmony plays an important role in a wide variety of styles
and genres of music, and the prediction of the next chord
in a sequence of chords constitutes a fundamental task in
Music Information Retrieval (MIR) [1]. Musicologically,
sequential chord prediction is important for the study of
the syntax of tonal harmony [2, 3], in particular for ad-
vancing the understanding of the structure of chord pro-
gressions. From a practical point of view, models for se-

quential chord prediction are important components in sys-
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tems performing a variety of tasks, such as chord estima-
tion (from both audio and MIDI) [4-7], harmonic struc-
ture detection [8—10], automatic accompaniment [11, 12],
and music generation [13,14]. Typically, such systems also
have other components such as a segmentation or duration
model which predict the locations of chord changes [5, 8].
In this work, however, we use the ground-truth chord seg-
mentation, and instead concentrate purely on the prediction
of the next chord in a sequence of chord symbols.

One important axis along which chord sequence predic-
tion models can be categorized is by the chosen model ar-
chitecture. Skip-gram models, as well as Markovian ap-
proaches such as n-gram models, consider a few chords
at a time as symbols themselves [15-19]. They typically
treat different chords independently rather than using any
feature extraction. Multiple viewpoint approaches can ac-
count for musical dimensions such as rhythm and pitch
separately [19-21]. Non-sequential models, such as gen-
erative grammars [22-25], can also be used for sequential
chord prediction [26]. While such grammars are strongly
rooted in music theory, their practical application typically
involves more computational complexity than the afore-
mentioned methods.

Deep learning methods, in particular recurrent neural net-
works (RNNs), have been the dominant method in recent
years due to their flexibility, short development time, and
high performance (provided that sufficient training data is
avaliable). RNNs are able (in theory) to consider the en-
tire history of chords during prediction [5, 8-10]. They
can treat each chord independently (like n-gram models)
by using one-hot vectors as input, or can account for mul-
tiple musical dimensions simultaneously (like the multiple
viewpoint approaches) by using hand-crafted features or
multi-hot vectors as input. Additionally, no matter the spe-
cific input format and features, chord embeddings can eas-
ily be trained (e.g., by Word2Vec [27]) and used in order
to learn relationships between similar chords [28,29].

In this work, we explicitly investigate whether adding
information about the past melody (i.e., the melody dur-
ing previous chords) improves prediction accuracy for the
subsequent chords. It has been shown that external, non-
chordal information can improve harmonic structure pre-
diction performance, for instance rhythmic and metrical
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Root note € ({A-G} x {b, #,@})

Triadic form € {maj, min, dim, sus4, aug}
Extension (+ alteration) €{7h/#, 9b/#, 11b/#, 13b/#}
Bass note €{\+ ({A-G} x {b, # B}

Figure 1: WlJazzD’s basic chord notation. Every chord
consists of at least a root note and a triadic form. Exten-
sions (with optional alteration) and bass note are optional.

information [30]. While it is essential to use concurrent
melodic information (encoded in the form of chroma vec-
tors [5] or MIDI notes [8]) for automatic chord estimation
and harmonization, in this work only the melody prior to
the chord to be predicted is taken into account.

It is important to emphasize at this point that we do not
intend to create a state-of-the-art system for chord predic-
tion, and therefore a comparison with such methods is out-
side of the scope of this work. Rather, we present here
a controlled experiment investigating the effect of a sin-
gle feature (past melody information) on chord prediction
performance. As a consequence, our findings can inform
the design of chord prediction systems in real-time sce-
narios such as live transcription or automatic accompani-
ment. However, we make here two simplifying assump-
tions that are not fulfilled for automatic accompaniment:
our model takes as input the ground truth chord segmen-
tation boundaries, and the model gets as input the correct
chords from the previous steps. These assumptions are es-
sential to eliminating noise from our experiments and en-
able direct conclusions about the effect of melody on chord
sequence prediction.

A motivating idea for this study is that the melody might
contain information about the tonal context of a section of
music, which leads to more accurate predictions. Consider
the scenario of predicting the chord following a G7. If the
melody played over the G7 contains the notes Eb and Ab,
then a C minor chord should be more probable than a C
major chord, while the notes E and A would more strongly
imply a C major chord. The G7 chord on its own would
not disambiguate between these two cases. All code for
the models discussed in this work are available online. !

2. DATA
2.1 Dataset

In this study, we use the Weimar Jazz Database (WJazzD)
[31], containing 456 unique jazz solo improvisations. Each
solo improvisation contains a transcribed improvised solo
melody and the chord accompaniment. Of the tables pro-
vided in the WJazzD, only melody and beats are selected
and utilized for further analysis, providing information on
the pitches in the melody and the accompanying chord pro-
gression respectively for all solos.

In the WJazzD, a chord is defined by a root note (pitch
class), a triadic form, extension (and alteration), and the

"'https://github.com/ldriever/ML_Jazz
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Figure 2: Number of chords per type in the full WJazzD
after type reduction.

bass note (see Figure 1). The chord extension is any as-
cending combination of 7, 9, 11 and 13, each accompanied
by an optional alteration (flat or sharp). The bass note in-
dicates the lowest note in the chord and is assumed to be
the same as the root note if not included. We treat all en-
harmonically equivalent pitch classes as identical (i.e., Ab
and G# are the same).

Each jazz solo is referenced by a unique melid € [1,456].
Together with a bar € [—1, Ny, 1:4] and beat € [1,4], a
unique coordinate to identify a distinct beat in a particu-
lar solo is formed. Here N,z indicates the max num-
ber for bar specific to a solo. Chords in the WJazzD only
change on beats. Thus, utilizing this coordinate system, for
each beat in a solo, its corresponding chord can be selected.
Each beat also has a duration, measured in seconds. The
WlazzD is not quantized, so consecutive beats typically
have slightly differing durations.

Notes from the solo improvisations are also referenced
by this system, which we use to assign each note to a
particular chord, as well as by more fine-grained sub-beat
and tatum coordinates, which we use only for ordering the
notes. Each note has a MIDI pitch in the range 0 — 127
and a duration (unquantized), measured in seconds.

2.2 Reduction of Chords

There are 418 unique chord symbols in the dataset, exclud-
ing ‘NC’ which stands for no chord, and which we handle
by continuing the previous chord. Some of these chords
are very rare in the dataset. To reduce this sparsity, we alter
the chord notations by removing chord extensions beyond
the 7th (e.g., Ab+79b — Ab+7; D#7913 — D#7). This re-
duction maps rare chords to simplified and more frequent
representations while preserving their core. After this re-
duction, 297 unique chords remain. By further removing
the bass notes for each chord (e.g., C7/A — C7; A+/C#
— A+), the number of unique chord types (triadic form
plus remaining extensions) is reduced to 16, and the num-
ber of unique chords (including their root) is 183. Figure 2
shows the resulting distribution of chord types, which is
still highly skewed, but to a much lesser degree than the
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original dataset. Following this reduction, 4% of all the
chords are identical to the previous chord.

3. MODEL
3.1 Input Representation

In this work, we compare two different model input rep-
resentations. First, a baseline model, for which the input
represents only a sequence of chords, and each input vec-
tor represents a single chord. The second model investi-
gates the influence of including information about the im-
provised solo melody by instead encoding each chord as a
sequence of input vectors, each representing the chord as
well as a single note played during that chord (if there are
any).

3.1.1 Baseline

For the baseline model, each tune is represented as a se-
quence of input vectors, each representing a chord without
any information about the improvised solo melody.

Each chord is encoded into a multi-hot vector of length
24. The first 12 entries indicate the notes in a chord. We
use a multi-hot chroma vector of length 12 with the root
of the chord at 0. Thus, each chord of the same type (e.g.,
maj7) will be identical in their first 12 elements. The sec-
ond 12 elements indicate the root note of the chord rep-
resented by a one-hot pitch class vector with C=0. By
encoding chords in this way, we embed them in a space
where some information can be shared across related chord
types irrespective of their root (e.g., major chords and aug-
mented chords share a major 3rd above the root) as well as
across unrelated chord types with the same root (e.g., C7
and Cdim7 share a root note).

3.1.2 Encoding Melody Information

For the melody model, each input vector represents a sin-
gle note and its associated chord. If multiple notes occur
during a single chord, they are encoded in separate vec-
tors with the same chord representation. Here, each input
vector is composed of three concatenated parts, of length
45 in total: the chord (identical to that described for the
baseline), the pitch, and the duration.

The pitch of a note encoded in a multi-hot vector of length
20. The first 12 elements are a one-hot vector indicating
the enharmonic pitch class of the note, where C=0. The
last 8 elements encode the octave of the note from 0-7,
where we define middle C to be in octave 3. To complete
the note’s encoding, the last element indicates the duration
of the note, measured as a proportion of the corresponding
beat. Since notes in the WJazzD are not quantized, this
duration is typically not an even multiple or divisor of the
beat, but rather include some noise, indicating a human
bias in the length of the note played. In the absence of any
notes during a chord, the pitch and duration parts of the
input vector are all set to 0.

Since we consider each melody as a sequence of notes
(represented by their pitches and durations), but the task
is to predict the next chord, the melody model’s predic-
tion is only measured after the last note of a given chord.
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Structurally, this leads to one important difference between
the baseline and melody models: The melody model may
receive each chord as input multiple times, whereas the
baseline model only sees each chord once. To control for
this difference, we considered duplicating the baseline’s
input similarly. However, that would in fact still encode
melody information into the baseline model—specifically,
the number of notes that occur during each chord, which,
as we show in Section 4, is a key piece of information that
the melody model relies on for its increased performance.

3.2 Model Architecture

Both baseline and melody models have an essentially iden-
tical structure based on a recurrent neural network (RNN).
Unlike dense or convolutional neural networks, RNNs are
able to retain sequential information and can thus be ap-
plied to data, such as music, of variable-length sequences
where the order of data points is of key importance. The se-
lected type of RNN is a long short-term memory (LSTM)
network [32]. An LSTM makes use of two hidden cell
states and an arrangement of three types of “gates” to allow
it to retain information over longer sequences of input data.
This allows LSTM networks to overcome the “vanishing
gradient” problem faced by traditional RNNs [33]. We
use uni-directional LSTMs because a bi-directional LSTM
would require using information from the entire known
chord series, which is not compatible with the aim of chord
sequence prediction.

The model architecture is depicted in Figure 4, where “v:
I” indicates that the data at that point is a vector of length /.
It consists of a single dense embedding layer, one or more
LSTM layers (set via hyperparameter tuning; see subsec-
tion 4.1), and a single dense output layer. The embedding
layer finds a suitable representation of the input data and
converts each data point to a representation of size “em-
bedding size” (set by hyperparameter tuning). The LSTM
layers handle the sequential information of the data and
output data points of size “LSTM hidden size” (set by hy-
perparameter tuning). The final linear dense neural net-
work layer translates the data into the desired representa-
tion: a vector of length 183 where the location of the max-
imum value indicates the predicted chord. Remember that
in the case of the melody model, only the output resulting
from the last input note of each chord is used.

4. RESULTS AND DISCUSSION
4.1 Hyperparameter Tuning

For our experiments, we performed 10-fold leave-one-out
cross-validation so that each tune in the WJazzD can be
included in a test set. Thus, 10 different versions of each
model were trained, each with one fold for testing, one
for validation, and the remaining 8 for training. We tuned
the models’ hyperparameters on a random 0.8, 0.1, 0.1
split (not aligned with any of the folds), and used the val-
ues which maximized performance on that validation set
throughout testing.

To train each model, we use the Adam optimizer [34],
with cross entropy as a loss function, and weight decay to
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Figure 4: Architecture of the used machine learning model.

implement /5 regularization. To reduce the amount of over-
fitting, we apply early stopping to end training when the
validation loss has not decreased over the last 30 epochs.
To set the batch size and learning rate, we used the auto-
mated tuning algorithms of the Pytorch-Lightning module
(based in part on [35]) which resulted in a batch size of
64 and a learning rate of 0.014 for each model. Addition-
ally, we optimized the amount of weight decay in the range
1075 to 0.1 for each model, resulting in 0.001 for the base-
line and 0.00008 for the melody model.

Finally, we also optimized three structural hyperparame-
ters using a grid search: embedding size € {32, 64,128},
LSTM hidden size € {32, 64,128,256}, and the number
of LSTM layers € {1,2,3}. The best performing val-
ues were 64 and 128 for both models for the embedding
size and the LSTM hidden size respectively, and 1 and 2
LSTM layers for the baseline and the melody model re-
spectively. That the melody model is larger was to be ex-
pected: It must retain information over longer sequences
of input data.

For both models, the training and validation losses re-
mained rather far apart from one another, even at the best
identified value of the weight decay. However, this was
deemed unavoidable as a sensitivity analysis was performed
and showed that any further increases and decreases of the
weight decays lead to deteriorated performance in terms of
validation accuracy.

4.2 Results

Table 1 reports the average prediction accuracies of the
baseline model and the melody model across the entire
WlazzD. Note that for the accuracy averaged across each
chord, the contributions of different tunes depends on their
length. The results show that the additional melody infor-
mation has lead to an increase in prediction accuracy, from
44.95% to 47.37% when averaged across each chord. For
both models, there is a wide spread between maximum and
minimum performance when averaged per tune, ranging
from 0% — 100% for the melody model and 0% — 98.6%
for the baseline. Nonetheless, the melody model’s increase
in performance is consistent across all 10 folds.

To quantify the evidence for the hypothesis that melody
information increases prediction accuracy averaged per tune,
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Figure 5: Comparison of prediction accuracy per tune for
the baseline and the melody model. The diagonal repre-
sents unchanged accuracy.

we performed a Bayesian linear regression that models a
piece’s accuracy on the basis of the model ID, the tune
ID, and the model training ID for each fold (because the
chord predictions inside one fold are not independent). We
use weakly informative prior distributions over the regres-
sion coefficients that weakly favor the alternative hypoth-
esis that melody information does not increase the predic-
tion accuracy. This setup quantifies the uncertainty in how
much of the accuracy difference is actually related to the
different model architectures by controlling for tune vari-
ety and model training (see for example [36, 37] for more
information about this statistical testing approach). The re-
gression was implemented via Markov-chain Monte-Carlo
sampling using the python package bambi [38], which is
based on the probabilistic programming language pymc3
[39]. The results show that the probability that the accu-
racy differences can be traced back to the model archi-
tectures is about 99.52%. In other words, it is over 200
times more likely that melody information increases chord-
prediction accuracy than not. This can be considered very
strong evidence [40].

Each model’s performance per tune is visualized in Fig-
ure 5, where points above the diagonal indicate that the
melody model improves prediction accuracy compared to
the baseline, and points below the diagonal indicate that
prediction accuracy decreases for the melody model. Over-
all, melody information improves prediction accuracy for
49.66% of the tunes in the WlazzD (average accuracy in-
crease 11.94%), had no effect for 12.41% of the tunes, and
worsened performance for 37.93% of them (average accu-
racy decrease 9.48%).

For further investigation, we quantified each model’s per-
formance on target chords where melody notes are present
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Model Baseline ~ With Melody
Average across Chords 44.95 47.37
Standard Error 0.29 0.29
Average across Tunes 43.55 45.88
Standard Error 1.09 1.20

Table 1: Average prediction accuracies in percent for both
models across the entire WJazzD.

during the previous chord and those where they are not.
Interestingly, the melody model outperforms the baseline
by 2.26% when a melody is present, but by 3.80% when it
is not. This is a counter-intuitive result: the melody model
improves most when there is no melody. However, it ap-
pears that the absence of a melody is also a strong signal
that the baseline model misses.

A confusion matrix for the baseline model’s predictions
is shown in Figure 6a, and the melody model’s confusion
matrix is shown in Figure 6b. Each of these matrices is
normalized by row, and “!root” refers to predictions which
have an incorrect root and are therefore not included in
any other column (the other columns only capture predic-
tions where the root is correct). Chord types are sorted
by frequency, and the figures show that both models per-
form very well on the most common chord type (7), and
worse on the more rare chords, which is not unexpected.
However, the melody model sees an improvement over the
baseline in the more rare chords, especially from maj to
dim. This is visualized in Figure 6¢, which plots the differ-
ence between the two confusion matrices (melody minus
baseline model) using a diverging color scale. Here, the
improvement of the melody model in correctly predicting
chords is shown by red entries along the main diagonal.
The blue entries in the “!root” column (the rightmost col-
umn in Figure 6) clearly show that the melody model also
reduces the proportion of errors due to an incorrect root.
In fact, the only chord type for which the baseline model
outperforms the melody model is minor triads, which the
melody model sometimes misclassifies as rarer 6th and mi-
nor 6th chords (although this is not a common mistake, as
can be seen in Figure 6b).

To investigate what specific aspects of the melody tend
to correlate with the increased performance of the melody
model, Figure 7 shows how the presence of each pitch dur-
ing the chord preceding each target chord influences each
model’s prediction accuracy. The pitches are denoted by
their interval above the root of the target chord. For ex-
ample, a C7 for which the melody included an A and a B
during the previous chord would count towards the “Pitch
present” values for M6 and M7 and the “Pitch absent” val-
ues for all of the other intervals. The values for the inter-
vals m3, d5, and m6 indicate that the melody model out-
performs the baseline to a much greater degree following
seeing those pitches than in their absence.

In fact, for these intervals (the three largest increases), the
results have a clear music theoretical explanation: after a
d5, the proportion of -7b5, dim, and dim7 chords (all of
which contain the pitch a d5 above their root) increases to
9.12% versus 5.50% overall. The melody model already
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Figure 6: Confusion matrix for the baseline model (a) and
the melody model (b), normalized by row. “!root” indi-
cates a prediction with the incorrect root note, which is not
included in any other column. The chords are sorted by
their frequency in the WlazzD. The difference (b) minus
(a), i.e., the melody model’s improvement over the base-
line, is visualized in (c).
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Figure 7: The melody model’s improvement over the base-
line depending on what pitches (measured by their interval
above the target chord’s root) co-occur with the chord pre-
ceding the target chord (i.e., those which are in the melody
model’s input).

does better than the baseline on these chords (see Figure
6¢), but after a d5, the melody model outperforms the base-
line even more, by 11.46% compared to 9.32% overall. A
similar result is found after m3 and m6 intervals (strong in-
dications of a minor key): the frequency of - and -7 chords
is greater after these intervals, and the melody model’s in-
crease in performance rises from 3.48% overall to 4.47%
in their presence. After a P4, the melody model outper-
forms the baseline by less than usual on all of the chords
rarer than - (and about equals its usual improvement on
the more common chords), perhaps because the P4 is both
quite common, and not a strong indicator of any of the rare
chords music theoretically. The melody model still outper-
forms the baseline by about 1.3, even in this case.

4.3 Examples

Here, we present four examples of the melody’s effect on
chord predictions. First, Kenny Dorham’s 1955 improvi-
sation over the tune Lady Bird [31], for which melody in-
formation improves overall performance significantly. The
baseline model achieves an accuracy of 27.28% on this
tune, while the melody model correctly predicts 45.45%
of the chords. This tune is a clear case in which the lack
of melody has improved model performance. Bars 15 and
16 (see Figure 8) contain the turnaround Abmaj7 — Db-
maj7 — Cmaj7. No melody is present for the prediction of
these chords. However, as is shown in Figure 8, the melody
model correctly predicts each of these chords, while the
baseline model misses all of them. This suggests (as we de-
scribed earlier quantitatively) that the melody model also
has the advantage of being able to encode where no melody
is played, and to make use of this additional signal.

One example for which melody information has decreased
overall performance is Joshua Redman’s 1994 solo over
the tune Sweet Sorrow [31]. For this tune, the baseline
model achieves an accuracy of 28.57% while the melody
model achieves only 11.43%. Inspecting the chord pro-
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Ground Truth Cmaj7 Ebmaj7 Abmaj7 Dbmaj7 Cmaj?
49%—“_4
. N & - I 1 |
oy =1 — {e o
o *
Base!m? model Cma j7 E b—7 D—7 G 7 Db—7
prediction:
Melo.dy. model Cmaj7 F 7 Abmaj7 Dbmaj7 Cmaj7
prediction:

Figure 8: Extract of bars 15-17 from Kenny Dorham’s
1955 improvisation over the tune Lady Bird [31].
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Figure 9: Extract of bars 23-24 from Steve Turre’s 1987
improvisation over the tune Dat Dere [31].
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Melody model 7 o7
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Figure 10: Extract of bars 12-13 from Joe Henderson’s
1991 improvisation over the tune UM.M.G. [31]

gression and sheet music for Sweet Sorrow, one finds that
for most of the tune, the chord progression constantly re-
peats the chords Eb7 — Ab-6. The melody, however, changes.
The model without melody information settles into a re-
peating pattern of Eb7 — Ab7 and thus predicts half of
this main chord pattern correctly. The model with melody
information, on the other hand, predicts a more varying
chord pattern. Thus, it appears that in this case the combi-
nation of a steady chord pattern and varying melody means
that including the melody information more noise than use-
ful information.

Looking into specific outputs, Figure 9 shows an excerpt
from Steve Turre’s improvisation over Dat Dere. Here, the
melody model predicts C-6 for the final chord, while the
baseline correctly predicts C-. As mentioned in regards
to Figure 6, this is one example where the melody model
overpredicts a more complicated chord, in particular the -
— -6 mistake. Furthermore, related to Figure 7, this exam-
ple shows a case in which a P4 in the melody (the two Fs
on beats 3 and 4 of the first bar, which are a fourth above
the target C), do not imply any chord in particular.

Finally, Figure 10 presents an excerpt from Joe Hender-
son’s improvisation over U.M.M.G.. Here, the melody model
correctly predicts the final Dbdim7, while the baseline in-
stead guesses Dbmaj7 (a chord which occurs multiple times
previously). Again related to Figure 7, this is one exam-
ple where a d5 in the melody (the G in the first bar—
enharmonic to Abb—which is a diminished 5th above the
target Db) appears to have been particularly informative
for the model.
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5. CONCLUSION

In this work, we presented two simple LSTM models for
the task of chord prediction in Jazz, differing only by their
input representation and tuned hyperparameters. We have
shown that including improvised melody information in
the input data leads to more accurate chord predictions.

The main increase in performance is on the more rare chords,
and this improvement is even more evident when the melody

itself contains a note which implies a rare chord. We also
showed that, for the melody model, the absence of melody
was itself an informative signal.

Future work could investigate whether a similar finding is
true for other genres of music. Since Jazz improvisations
can be more unrelated to the underlying chord progression
than melody from other styles of music (e.g., Western clas-
sical or Pop music), it is an open question as to whether a
similar improvement can be found for those styles. Includ-
ing the specific performer as an additional input feature
(the WJazzD contains multiple improvisations by each per-
former) could also test whether the melody model would
be able to perform lick detection or improvisation style
detection. The information of the performer would help
to differentiate melody cues commonly used by each per-
former, which could lead to more accurate chord predic-
tion. Finally, integrating melody information into a system
which must also perform chord segmentation and does not
have access to the correct prior chords would be a log-
ical next step, along with updating the model to handle
more complicated polyphonic structures that are important
to harmonic structure [41].
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