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ABSTRACT

As corpora of digital musical scores continue to grow, the
need for research tools capable of manipulating such data
efficiently, with an intuitive interface, and support for a
diversity of file formats, becomes increasingly pressing.
In response, this paper introduces the Digital Musicol-
ogy Corpus Analysis Toolkit (D1iMCAT), a Python library
for processing large corpora of digitally encoded musical
scores. Equally aimed at music-analytical corpus stud-
ies, MIR, and machine-learning research, DiMCAT per-
forms common data transformations and analyses using
dataframes. Dataframes reduce the inherent complexity
of atomic score contents (e.g., notes), larger score enti-
ties (e.g., measures), and abstractions (e.g., chord symbols)
into easily manipulable computational structures, whose
vectorized operations scale to large quantities of musical
material. The design of DiMCAT’s API prioritizes com-
putational speed and ease of use, thus aiming to cater to
machine-learning practitioners and musicologists alike.

1. INTRODUCTION

Given the proliferation of large corpora of digital scores
(e.g., [1-4]), the computational challenges of analyzing
symbolically encoded staff notation loom large in Digi-
tal Musicology and MIR. In principle, any symbolic music
encoding is equally amenable to algorithmic processing,
to the extent that it is consistent and comprehensive. In
practice, however, the visual efficiency of staff notation—
which conglomerates tonal, rhythmic, metric, articula-
tory, and other musical parameters in context-dependent
and position-dependent symbols—is inversely related to
its computational efficiency. Analyzing large collections
of digital scores is thus hindered not only by the sheer vol-
ume of data involved, but also by the intrinsic complexity
of the representations comprising musical structures. [5, 6]

To address such challenges, we present the Digital Mu-
sicology Corpus Analysis Toolkit (DiMCAT), which uses
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dataframes [7-9] to disentangle pertinent score features
within tabular representations, providing an interface for
processing and analyzing large collections of dataframe-
structured score data. DiIMCAT supports MusicXML, MEI,
Humdrum, and MuseScore (see Section 3.1), among other
formats, and provides an expandable range of music anal-
ysis functionalities, including feature extraction, similarity
analysis, and visualization. Addressed to Digital Musicol-
ogy and MIR communities alike, its purpose is to provide
a user-friendly interface for “distant-reading” staff-notated
score corpora, and for utilizing score data in machine-
learning pipelines. Efficiency at scale was among our pri-
mary design goals, an aspect which is only growing in im-
portance as corpus sizes have continued to grow (e.g., [3]),
with scores, rather than MIDI encodings, increasingly used
to train large computational models (e.g., [10]).

In this paper, we describe the design and implementa-
tion of DiMCAT and argue for its usefulness through trials
with various corpora. First, in Section 2, we outline a ratio-
nale for the representation of staff notation as dataframes,
and for the underlying data-relational mindset. Section 3
presents the library design from a user’s perspective, cover-
ing such topics as data loading (Section 3.1) and the slice/-
group/analysis pipeline (Section 3.2). Evidence of ease-of-
use in musicological research is provided in Section 4, and
a comparison to extant libraries is made in Section 5.

2. UTILIZING DATAFRAMES TO REPRESENT
SCORES

Dataframes were first introduced in 1990 as part of the
statistical programming language S [7] and later ported
to its descendant R [11]. Since then, they have become
ubiquitous in the data science and machine learning com-
munities, with a multitude of supplementary frameworks
released across the spectrum of programming languages,
often aiming to overcome performance problems associ-
ated with large dataframes (e.g., modin [12]). The wide
adoption of dataframes can be attributed to their versatil-
ity, convenience, and operational principles, which resem-
ble those of relational databases, spreadsheets, and nested
arrays [9, 11-13]. DiMCAT encodes all score information
within dataframe objects provided by either pandas or
modin, with support for additional libraries (which we re-
fer to as “backends”) planned in future versions.
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Table 1: Ludwig van Beethoven, String quartet op. 18/6, 4th movement (“La Malinconia”), measure number (mn) 44.
The measure contains the section break after the slow introduction and is composed of two incomplete measure units with
counts (mc) 44 and 45. The new 3/8 time signature (timesig) of the latter is introduced by a 3/16 upbeat, mathematically
completing the 2/4 meter of the former. The dataframe represents notes and rests from beat 2 onwards. Its index (bold
values on the left) comprises left-closed, right-open intervals which express the start and end points of each event on the
score’s timeline, measured in quarter notes. Each column has a name (bold) and a data type (ifalic). The first eight columns
contain temporal information (see Section 2.1). The columns staff and voice determine a notational layer. The last four
columns express pitch-related information (tpc is tonal pitch class, expressed as the distance from C measured in perfect
fifths) and are empty for rows representing rests. Special columns are omitted (e.g., ties, tremolos, or grace notes).

2.1 Representing staff notation as dataframes

Most encoding standards symbolically represent staff no-
tation in hierarchical fashion. This includes most non-
XML plaintext formats—at least those capable of encod-
ing multiple staves, such as Lilypond, ABC, or Humdrum’s
**kern—as well as XML-based standards. Table 2 shows a
selection of tags in order of hierarchical nesting, from out-
ermost to innermost, for three common XML-based stan-
dards. The table reveals that these standards recognize al-
most the same types of score elements, albeit located at
different levels within the document tree. Among these
elements are staves, measures, textural layers (‘voices’),
chords (understood as groups of notes sharing a stem) and,
finally, notes. For certain features, such as tempo and
dynamic markings, the choice of hierarchical anchor is
to some extent arbitrary: a tempo marking, for instance,
might be attached to a specific measure or to a chord within
that measure. DiMCAT’s approach to the unified modeling
of diverse hierarchical representations consists in travers-
ing them and grouping score elements of the same type in
the same dataframe. This obviates mapping the particulari-
ties of each standard into a common score model, a process
which would either inherit a degree of arbitrariness, or re-
sort to error-prone estimations in order to eradicate it. !
DiMCAT disentangles the underlying score hierarchy by
grouping elements in five distinct categories, which we re-
fer to as “facets”. These are:
* notes and rests (“events”, including ties, tremolos,
grace notes, etc.)
 performance details (“control events”; tempo, dy-
namics, slurs, lyrics, articulation, etc.);
¢ measures (“flow control”; measure durations, staves,
repeat indications, fine, etc.);

! Such a mapping, employed for example by the music21 score pro-
cessing library [14], is rather suitable when a complete model of the score
needs to be maintained for further processing.

MuseScore ‘ MEI ‘ musicXML

<Score> <music> - - - <score-partwise>  <score-timewise>
<Staff> (<part>---) <part> <measure>
<Measure> | <measure>--- | <measure> <part>
<Voice> <staff> ... <note>
<Chord> <layer> - - - <staff>, <voice>
<Note> (<chord> - --)
<note>
Table 2: Synopsis of XML tag hierarchies in three

widespread XML-based score models. Models differ
mainly in the placement and naming of score elements
(<layer> being equivalent to <voice>). In the MEI col-
umn, ellipses (- - - ) suggest that any number of hierarchical
levels may be nested, and parentheses mark optional lay-
ers. MusicXML has two distinct organizational strategies
(partwise or scorewise), which converge at the note level.

e analytical annotations (“labels”; chord changes,
form labels, algorithmic outputs, etc.);
* metadata.

A facet is the raw, original representation of a category
of score elements from which specific, homogeneous “fea-
tures” can be derived. In its simplest form, a feature is
a subset of a facet in terms of rows and/or columns. For
example, the NotesAndRests facet (shown in Table 1)
comprises the Rests feature from which all rows and
columns about notes have been removed. Other features
offer variants requiring simple transformations. For in-
stance, the Not e s feature may be requested with tied note
heads fused into single note events, with metrical weights
added, or with pitches expressed as scale degrees (for
an example, see Listing 2). Other features require more
substantial computational analysis on a set of features or

2 Note that visual details such as beaming are not loaded by default
whenever they are deemed irrelevant for a distant-listening setting.
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facets, and necessitate the invocation of an Analyzer
(see Section 3.2.3).

Our approach thus projects different hierarchical score
representations into a paradigm similar to that of relational
databases. Structural relations previously expressed by the
underlying score hierarchy are now expressed via IDs (for
example, the columns ‘staff’, ‘voice’, and ‘mc’ in Table 1).
In addition, all objects (except metadata) are unambigu-
ously located on the score’s musical timeline by means of
timestamps. As Table 1 shows, each facet and feature in-
cludes five columns expressing timestamps in three par-
tially redundant ways. Timestamps expressed by means of
‘mc’ (the strict count of measure-like units from the begin-
ning of the piece, regardless of their actual length or dis-
played measure number), along with ‘mc_onset’ (the loca-
tion within a measure-like unit, represented as a fraction
of a whole note) serve a crucial function. Given the actual
durations of the measure-like units, ‘mc’ and ‘mc_onset’
determine ‘gstamp’, an object’s offset from the beginning
of the piece in quarter notes. In addition, DiMCAT pro-
vides ‘mn’, the measure numbers actually found in score
engravings, which are in principle non-unique and based
on longstanding editorial conventions [15]. Analogously
to ‘mc_onset’, these units warrant ‘mn_onset’ positions,
required for computing metrical weights consistent with
the respective meter (in the column ‘timesig’).

2.2 Operations on DimcatResource objects

To facilitate the processing and analysis of potentially large
collections of notated music, DiMCAT aggregates facets
(as well as features or analysis results) drawn from multi-
ple pieces in a single dataframe, a DimcatResource.
This approach enables vectorized operations on entire
datasets, thus achieving higher performance in compari-
son to an equivalent sequence of single-dataframe oper-
ations. For additional speed when using very large cor-
pora, DiMCAT can delegate dataframe operations to a
distributed-computing backend such as modin, which al-
lows for automatic partitioning and parallel processing
[12]. DimcatResources natively serialize into ZIP
archives accompanied by a Frictionless descriptor file [16]
allowing for type-safe data validation and loading with ex-
ternal tools. Furthermore, the “frictionless” design allows
DiMCAT to treat a descriptor file with its included meta-
data (column descriptions, file genesis, versioning infor-
mation) as if it was the described resource itself, and to
load the actual data into memory no earlier than required.
The loaders described in the following section have the
purpose of pre-processing the data to be analyzed, and
storing it in a self-contained format that can also be eas-
ily served on the web.

3. LIBRARY DESIGN

This section describes DiMCAT’s design and API, 3 which
parallel familiar routines of musicological research: con-

3 The complete API and documentation can be found at https://
github.com/DCMLab/dimcat. In addition to pydocs, we provide
Jupyter Notebook—based interactive tutorials.
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structing a corpus (loading and filtering, Section 3.1), or-
ganizing relevant corpus data (slicing and grouping), and
running algorithms on this selection (analyzing, and plot-
ting (Section 3.2).

3.1 Loading Data

DiMCAT defines loaders which parse and store score data
for a variety of symbolic encoding standards with the aid of
external libraries. * This is typically achieved by discover-
ing the relevant files on disk or (from the web) and produc-
ing the homogeneous representation (the dataframes pre-
sented in Section 2.1) in parallelized fashion, while also
compressing and storing the loaded data on disk for later
use. Once data has been pre-processed and stored along
with its metadata, DiMCAT’s default loader is capable
of determining which score features are present, and of
“lazily” loading them into memory whenever needed for
processing. Apart from decreasing the memory footprint,
this principle makes it possible to verify, before proceed-
ing, whether the features required for a processing pipeline
are actually available (see below). The extracted Facet
objects remain by design as faithful as possible to the orig-
inal data in terms of presence and naming of detected el-
ements. Names and types of facet fields are standardized
only in relation to the above-mentioned timeline columns,
which are necessary for alignment. Feature objects, on
the other hand, are comprehensively standardized upon ex-
traction to guarantee type safety. Less specialized ana-
lyzers such as Counters also allow for the processing
of Facets, and users who frequently work with custom
Features drawn from nonstandard elements may con-
tribute appropriate extensions to the codebase in the spirit
of community-driven development.

Once loaded, the data is represented internally by the
Dataset class and its various subclasses (see the com-
plete documentation for details). Dataset objects are
DiMCAT’s main drivers and the object type users interact
with the most. They grant centralized access to all avail-
able dataframes (Facets, Features, and Results),
depending on the current stage of computation. These ob-
jects in turn enable type-specific transformations and visu-
alizations.

3.2 The Analysis Pipeline

Conceptually, every action performed by DiMCAT is a se-
quence of PipelineStep objects which, having been
chained together, accept a Dataset object, perform a
transformation or analysis on it, and return a new data
object. In practice, this chaining is not entirely arbi-
trary, since some computations require data in specific for-
mats (for example, the CrossEnt ropy analyzer requires
equal-shaped probability vectors). All pipeline steps can
be expressed as, and instantiated from, associative arrays
of type DimcatConfig which are stored together with
a Dataset’s descriptor to make the pipeline generation
reproducible.

4 These currently include ms3 [17] and music21 [14], with
Verovio [18] planned to be added in the future.
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Each step in a Pipeline is fundamentally an instance
of one of the following three classes®: Slicers accept
data and partition it into chunks of various sizes—for ex-
ample, sections between repeat signs, segments under the
same guitar chord, or 8th-note-long slices. Slices never
cross the boundaries of a piece of music. Groupers ac-
cept data and group it in formally specified categories—for
example, segments with the same chord label, or pieces
composed in the same decade. Unlike slices, groups often
contain information from across the corpus. Analyzers
are the heart of the library, performing the actual computa-
tion once the data has been sliced and grouped.

Many questions in music corpus studies involve com-
parisons between groups with a degree of commonality,
e.g., between groups of pieces by the same composer, or
of segments such as sonata development sections [19].
By combining slicers, groupers and analyzers, music re-
searchers will find in DiMCAT an intuitive language for
addressing pressing questions in the field.

3.2.1 Slicers

Slicer objects invoke one particular feature to compute
segmentation boundaries. For example, a NoteSlicer
invokes the Notes feature and stores its timestamps (e.g.,
note onset positions) as slice markers within the resulting
SlicedDataset, interpreting them as time intervals.
The newly returned dataset will slice any facet or feature
subsequently requested, inserting an additional index level
or column for slice boundaries (any element spanning over
a slice boundary will be split or duplicated). In principle,
any feature (e.g., double bar lines, dynamic indications, or
the results of a key finder) can serve as the slicing crite-
rion. The properties of the feature used as criterion can
then be used for grouping the resulting slices (e.g., slicing
a dataset using the results of a key-finding algorithm en-
ables the subsequent grouping of slices by mode; see the
following section).

3.2.2 Groupers

Applying a Grouper to a dataset is tantamount to
binning pieces or slices based on a membership crite-
rion. As a result, any facet or feature requested from a
GroupedDataset is provided with a prepended index
level of group identifiers. This enables both choosing a
larger unit of analysis (by analyzing entire groups rather
than each contained piece or slice, see the following sec-
tion) and comparing groups of analysis results (for an ex-
ample, see Section 4.2).

Frequently used groupers include the
CorpusGrouper, the StaffGrouper, and the
ModeGrouper (grouping pieces, events, and key
slices, respectively). Groupers may also use metadata
as criterion: for instance, the YearGrouper groups
pieces based on their composition dates. Grouping is a
computationally cheap operation because it is performed
using dataframe indices.

5 That is without considering auxiliary pipeline steps such as Writers
which never result in a different dataset type.

3.2.3 Analyzers

Analyzers are at the heart of the DiMCAT library. Based
on its configuration, an analyzer will take one particular
or all available features from the Dataset, perform the
analysis on the minimal unit provided by the Dataset
(slice or piece), and return an AnalyzedDataset.
Results can be Feature objects (with timestamps) or
Result objects (without timestamps), both of which are
DimcatResources (see Section 2.2) and provide suit-
able methods for retrieving, displaying, transforming, and
plotting analysis results. In addition, they allow the com-
bination of piece or piece-slice analysis results into those
corresponding to higher units of analysis, e.g., piece re-
sults into group results. This makes it possible, by apply-
ing several groupers to the same AnalyzedDataset,
to regroup and recombine individual results. DiMCAT
currently uses the plotly library for creating interac-
tive plots and provides reasonable (but non-binding) de-
faults for combining grouped results in one figure. The
main types of analyzers are Counters, Comparisons
and ClusterAnalyzers, Transformations, and
RangeAnalyzers.

The base Analyzer class is designed to be easily ex-
tensible; additional analyzers can be created by the com-
munity without knowledge of the deeper layers of the code.
Contributors only need to understand the structure of the
features that the new analyzer accepts as input, and select
or implement the appropriate result type. Thereafter they
implement the new object’s serialization Schema ©and
one of the methods that performs the actual analysis on
a slice-, piece-, or group-specific dataframe. The method
combine (), used for aggregating two result objects into
one—for example, by adding result vectors—only needs
to be implemented if no superclass is available to inherit
it from. Optional methods include check () (for reject-
ing a dataset or feature if it doesn’t fulfill certain criteria),
pre_process () (for performing analyzer-specific fea-
ture transformations), and post_process () (for clean-
ing up the results object, for example by filling in missing
values). A new analyzer constructed in this fashion is guar-
anteed to work with DiMCAT’s pipeline architecture.

The basic Counter counts the number of rows of any
facet or feature (e.g., notes or chord labels). More ver-
satile counters aggregate counts or durations based on the
values contained in a given column (e.g., pitch classes),
value combinations between several columns (e.g., pitch
class—duration pairs), or n-grams (e.g., pairs of successive
dynamic indications). Results can be transformed (e.g., by
normalizing), various properties can be calculated and re-
turned (e.g., the distributions’ entropies), and plots can be
generated.

Comparison analyzers perform pairwise compar-
isons on the slices, pieces, or groups represented by a
given feature or result, such as the sliding-window auto-
correlation of a feature’s inter-onset-intervals, the Jaccard
similarity between chord vocabularies, or the cross entropy
between key profiles. They typically store their result as a

6 See details in the documentation.
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confusion matrix, plotted by default as a heatmap. The
results of comparisons lend themselves to subsequent ap-
plication of ClusterAnalyzers, which use common
algorithms such as k-means to compute groups that can
reveal relations between the features under comparison
[20,21].

Transformations apply a function or fit a model
in order to translate a feature into a different representa-
tion. Examples include analyzers that fit a Gaussian mix-
ture model to a distribution, tokenize pitch events for use
in a neural network, or transform pitch-class profiles into
Fourier coefficients (as demonstrated in Section 4.1).

RangeAnalyzers are useful in cases where only
minima and maxima (or the range) of numerical features
are relevant. Examples include the line-of-fifths segment
covered by a pitch class distribution [22] or the historical
timespan covered by a dataset based on composition dates.

Finally, there are many specific analyzers, such as the
PitchClassVectors analyzer featured in Section 4.1;
they perform an analysis or transformation (here, aggre-
gating durations) on one particular feature (here, Notes)
under a range of specific configuration values (here, for
example, type and format of pitch classes). A full list of
analyzers is available in the documentation.

4. EXAMPLES

In this section, we present a few examples of musicolog-
ical questions that can be easily answered using DiMCAT
(provided the requisite data is available).

4.1 Fourier analysis of pitch class vectors

D = Dataset.load("debussy_piano")

D_analyzed = Pipeline(
[WindowSlicer (quarters_per_slice=1.0),
PitchClassVectors(),
DiscreteFourierTransform()

) .process (D)

df = D_analyzed.get_result ()

df.sample (5)

Listing 1: Pipeline for slicing a dataset by quarter-note
windows, computing pitch class vectors and applying the
Discrete Fourier Transform.

The Discrete Fourier Transform has seen frequent ap-
plications to musical structures, in particular pitch-class
sets [23-28]. It belongs in a broader class of techniques
which require, in our terms, a “slicing” of the score, such
as a chordal reduction or a fixed-window segmentation.
For example, as part of a corpus study using the Discrete
Fourier Transform [29], DIMCAT was used to create en-
harmonic pitch class vectors for all 2-hand piano com-
positions by Claude Debussy. Listing 1 demonstrates the
simplicity with which this analysis can be expressed as a
DiMCAT pipeline. In the first line, the data is loaded from a
local directory. Then the pipeline is created and processed.
In the pipeline, a slicer first slices all pieces at every quarter
note, then an analyser creates vectors of aggregated pitch
class durations for each slice. Finally, the DFT analyser is
run on each vector and the result obtained. A sample of
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the results, with coefficients 0 through 6 given as complex
numbers, is shown in Table 3.

4.2 Evaluating key segments

D = Dataset.load("dcml_corpora.datapackage.json")
D_sliced = Pipeline(

[KeySlicer (),

ModeGrouper () ]
) .process (D)
F = DimcatConfig ("Notes", format=SCALE_DEGREES)
D_sliced.get_feature (F) .plot_grouped() # plot 1
D_grouped = CorpusGrouper () .process (D_sliced)
D_grouped.plot_grouped () #

plot 2

Listing 2: Plotting common dataset transformations
(plotting parameters omitted). Plots shown in Figure 1.

Given a score dataset with local-key annotations cre-
ated by human analysts or an automatic key finder, a re-
searcher might wonder how key segments in the major and
minor mode are distributed over the corpora contained in
the dataset, and how the tonal pitch-class profiles com-
pare between the two modes. This second example relies
on a dataset that includes key annotations’ and demon-
strates the power and ease-of-use of DiMCAT pipelines,
even without using any analyzers. The KeySlicer used
in Listing 2 is set up by default to slice the dataset by an-
notated modulations, and warns the user about pieces for
which no local key information is available. The pipeline
proceeds by applying the ModeGrouper to create one
group per mode which, in the present dataset, amounts to a
minor-key and a major-key group. Requesting the Notes
feature from a Dat aset processed in this fashion, we may
retrieve and plot a representation that reflects the group-
ing, as shown in the upper bar chart in Figure 1. The lower
plot demonstrates that the slicing criterion itself may also
provide meaningful insights into a dataset. It can be pro-
duced by applying a CorpusGrouper to the processed
Dataset and plotting the groups. (Without the corpus
grouper, the plot would show the major-minor ratio for the
entire dataset—that is, the result of the mode grouper).

5. COMPARISON WITH OTHER LIBRARIES

Other analysis libraries also lend themselves to the analy-
sis of datasets of symbolic music encodings. In this section
we compare DiMCAT to other open-source libraries which
maintain note names (pitch spelling) and support multiple
staffs and analytical annotations. Several among them like-
wise utilize dataframes.

The Humdrum Toolkit was one of the first frameworks
for computer-aided music analysis, and is still used for the
analysis of Humdrum and kern files across the range of
programming languages to which it has been ported. The R
package humdrumR [30] ports the Humdrum Toolkit into
R. While it provides support for computationally efficient
dataframes, and includes R’s inherent plotting capabilities,
like Humdrum itself it cannot import more modern, and
arguably more common, symbolic-encoding formats such
as musicXML without the use of error-prone converters.

Thttps://github.com/DCMLab/dcml_corpora
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corpus fname 1.0q_slice 0 1 2 3 4 5 6

debussy_other_piano_pieces 1068_reverie [351.0,352.0) 2.00+0.00; 0.32-0.18j  -0.50-0.87j  -1.50+0.50j -1.00+0.00j 1.18+0.68j  1.00+0.00j
debussy_childrens_corner 1113-03_childrens_serenade [27.0, 28.0) 2.25+40.00; 0.92-0.47j 0.37-0.22j 0.75-0.50j -1.12-0.65]  -1.67-0.03j  -0.75+0.00j
debussy_preludes 1123-12_preludes_feux [176.0,177.0) 6.62+0.00j 0.53-1.57j  -1.94-0.11j  0.00+4.12j  2.69-2.27j  2.47-3.30j  -2.12+0.00j
debussy_etudes 1136-04_etudes_sixtes [53.5, 54.5) 4.00+0.00; -0.12+0.37j -0.7540.00j -0.75-0.25j -1.25+0.87j 1.62-1.37j  1.50+0.00j

debussy_deux_arabesques 1066-02_arabesques_deuxieme [137.0,138.0) 4.00+0.00j 0.25-0.30j -0.25-1.30;  -2.00-1.00;  1.75+1.30j  0.25+2.30j  2.00+0.00j

Table 3: Sample rows from a dataframe containing the seven first DFT coefficients gained from quarter-note-window pitch
class vectors. The first three columns represent a multi-index indicating corpus, file name, and slice interval (expressed as
gstamp, see Table 1); they make it possible to trace the result back to the score.
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Figure 1: The two plots produced by the code shown in Listing 2.

Music21 [14] is a large Python library capable of im- provides mechanisms for studying the statistical properties
porting all relevant music formats, transforming them into of potentially very large amounts of musical material by
a comprehensive hierarchical model of the score. Rely- iteratively applying sequences of segmentation and group-
ing on an elaborate object model, it provides methods for ing algorithms with a high degree of combinatorial free-
creating and manipulating the elements of a music score. dom. From this point of view, the “slice” serves as an
However, its design renders it computationally demand- additional operational level between “note” [31-33] and

ing [30, 31] for large corpora, and it provides only few “piece” [34].
methods designed specifically for corpus analysis.

Several Python libraries follow a similar approach to
DiMCAT’s, analyzing and making available score infor- 6. CONCLUSION
mation in the form of dataframes. These include the
VIS-framework [32] and CRIM intervals [33]
(both focusing on intervallic successions and sonorities),
CAMAT [31] (basic pitch statistics), and musif [34] (with
a focus on global features of entire scores). Among them,
only [31] introduces its own score parser (for MusicXML),
with the remaining ones invoking music21. [34] also in-
cludes the MuseScore parser ms3 [17] and therefore ex-
poses an architecture that is as easily extensible as ours.

In this paper we have introduced DiMCAT, a Python li-
brary capable of parsing, transforming, and analyzing an-
notated music score data in a range of symbolic-encoding
formats, and to do so efficiently at scale. The library stores
data as dataframes, a ubiquitous structure in the fields of
digital humanities and data science. DiMCAT emphasizes
traceability (results can reliably lead to the original score
elements) and reproducibility (version identifiers are sys-

Although DiMCAT can, in principle, provide any algo- tematically applied to code and data). Thanks to an in-
rithm that operates on successions or sets of pitch events, terface that masks its inner workings, the functionality of
its focus on “distant listening” makes it less suited for the library is usable and extensible by musicologists with
close-reading studies than some of the aforementioned al- limited programming experience.
ternatives. Indeed, its distinguishing feature is the newly DiMCAT is released under the GPL-3.0-or-later Li-
introduced Slice-Group-Analyze paradigm, designed for cense, and we intend to continue adding further music ana-
inquiries in which the corpus, rather than the individual lyzers, inviting feedback, requests, and contributions from
score, is the primary research object. To this end, DiMCAT the community.
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