
Three Metrics for Musical Chord Label Evaluation
McLeod, Andrew
Fraunhofer IDMT
Ilmenau, Germany

andrew.mcleod@idmt.fraunhofer.de

Suermondt, Xavier
EPFL

Lausanne, Switzerland
xavier.suermondt@epfl.ch

Rammos, Yannis
EPFL

Lausanne, Switzerland
yannis.rammos@epfl.ch

Herff, Steffen
Western Sydney University

Sydney, Australia
s.herff@westernsydney.edu.au

Rohrmeier, Martin A.
EPFL

Lausanne, Switzerland
martin.rohrmeier@epfl.ch

ABSTRACT
Harmony constitutes an essential aspect of a broad range of styles
in Western music, and chords usually play a key role therein. Con-
sequently, the generation or detection of chords is central to a
wide range of computational models, for instance in chord estima-
tion, chord sequence prediction, and harmonic structure detection.
Such models are typically evaluated by comparing their outputs
to ground-truth chord labels using a binary metric (“correct” or
“incorrect”). As chord vocabularies continue to grow, binary met-
rics capture less information about the correctness of a given label,
thus equating all labeling errors regardless of their severity. In this
work, we present the chord-eval toolkit, which proposes three
different metrics drawn, adapted, and generalized from previous
work, addressing acoustic, perceptual, music-theoretical, and me-
chanical aspects of evaluation. We discuss use cases for which the
metrics vary in appropriateness, depending on properties of the
underlying music and the task at hand, and present an example of
such differences.
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1 INTRODUCTION
Chords play an essential role in the harmonic structure of music
across a wide variety of genres and eras. As such, the understand-
ing of chord progressions is fundamental to many tasks in Music
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Information Retrieval (MIR), such as music generation [3, 27], au-
tomatic accompaniment [30, 31], chord estimation [14, 16], and
harmonic structure analysis [17, 18]. Note that systems designed to
perform a particular task often include many components working
to understand various aspects of chords—for example, the audio
chord transcription system from [14] includes a chord sequence
model as well as an acoustic chord estimation model, and automatic
accompaniment systems include components designed to detect
previous chords in addition to predicting the next.

Regardless of the task, a quantitative evaluation is almost always
performed involving the comparison of the proposed system’s out-
put chord labels with some (typically human annotator-generated)
ground-truth labels. Even in the case of music generation, chord
prediction is often used (in addition to a listening experiment) as a
proxy for generation performance [3]. Fundamentally then, across
this wide range of tasks, the essence of evaluation is defining a dis-
tance function between two chord labels.Most often, this function
is a simple binary accuracy metric, where the distance between two
matching labels is 0 and all other distances are 1. However, there are
issues with this approach: in particular the equating of all errors,
varying vocabulary size, and low inter-annotator agreement.

The equating of all errors: With a binary metric, every error
is penalized equally, although, depending on the task, labelling
mistakes may be unequally egregious. For example, with a ground
truth label of C major, C minor and A minor are clearly much closer
to being correct than D♯ minor. In evaluation, such differences
can be key, as two models which have the same binary accuracy
may differ considerably in terms of the significance of their errors.
To alleviate this issue, more granular evaluation procedures are
sometimes used, which also calculate binary accuracies between
features of each chord label (e.g. the root pitch, the bass pitch, or the
chord type), either independently or in combination with each other
(e.g. inversion accuracy given that the root is correct) [2, 17, 18].
While this helps, the underlying issue remains: Within a particular
feature, every mistakes is penalized equally, and any interaction
between feature-errors (e.g., given an incorrect root, an incorrect
inversion might be better) is ignored.

Varying vocabulary size: Traditionally, a rather small vocabu-
lary of chord labels was used, often 24 or 25 (12 pitch classes for
the root, and either major or minor quality, plus sometimes a “no-
chord” symbol) [14]. However, recently, as models have become
more sophisticated and the availability of labeled data has increased
dramatically, ever larger chord vocabularies have been utilized, in-
corporating spelled pitch [17], additional qualities (e.g. augmented
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and diminished triads, sus chords, and various 7th, 9th, 11th, chords)
[26], and more features (e.g. bass/inversion, as well as chord tone
alterations and suspensions) [16]. Thus, there is a need for any
chord evaluation metric to enable a comparison between ground
truth and estimated labels drawn from different vocabularies, or
between models whose outputs lie in different vocabularies. For
example, with a binary metric, a model which outputs only triads
would be evaluated unfavorably if the ground truth also contains
7th chords, regardless of whether or not the model correctly pre-
dicts the underlying triad. One solution that has been used is to
apply a “reduction” mapping all labels into a smaller vocabulary
containing only a subset of used chord features (or equivalently
ignoring particular features for some metrics) [5, 23]. (A somewhat
similar approach is used in [12].) However, this does not fully solve
the issue: In this case, a different model capable of outputting infor-
mation about additional 7ths could not be rewarded for a correct
additional output (and its triad-reduced labels may suffer if much
of its computational power goes towards finding the correct 7th).

Low inter-annotator agreement: In some cases, ground truth chord
labels can be drawn from some canonical source (e.g., as [3] used the
real book). However, it is more common that human expert annota-
tors are relied upon to produce the labels. Annotators may, however,
have disagreeing judgments within a given piece. The determina-
tion of harmonic content often requires subtle assessments of the
given contrapuntal, motivic, textural, and even formal context. In
turn, such interpretation may require, for example, a distinction
between chord and consonant non-chord tones; choices between
alternative “diagonal” relations between bass and melody tones; or
the recognition of a theme type (e.g. antecedent-consequent phrase)
suggesting a harmonic template. Often, such decisions depend on
a particular reading of the section (interpretation), and it is not
uncommon for two annotators to disagree on a particular label: A
recent survey on audio chord recognition reported (from [4, 13])
inter-annotator agreement on chord root to range from 76% to 94%
[22]. To penalize models equally severely for every mistake could
be unfair or uninformative, since expert annotators could make (or
even have made) the exact same “mistake” (even calling such a case
a mistake is debatable).

In addition to these three issues, given the large variety of rele-
vant tasks, to propose a single metric that would adequately capture
the intricacies of error severity for all tasks simultaneously would
be tremendously difficult, if not infeasible. Indeed, the suitability of
a metric for one task in no way entails its suitability for another
task, as it is unclear a priori how to weight different aspects of the
resulting harmony for each. For example, a metric for automatic ac-
companiment may focus on evaluating the similarity of the sounds
of the two chords, while a metric for harmonic structure analysis
may instead focus on more structural or functional aspects of chord
labels.

Therefore, in this paper, rather than proposing a single “best-in-
all-cases” metric, we argue for a task-specific approach to chord
label evaluation. To that end, we present the chord-eval toolkit1,
in which (in addition to the binary metrics discussed above) three
different metrics are proposed and implemented. Our toolkit sup-
ports an extremely flexible encoding of each chord (see Section

1https://github.com/DCMLab/chord-eval

3.1), including spelled pitch and chord tone alterations. Each has
been designed to focus on particular features of chords relevant to
a subset of use cases, and we include in our description of each a
discussion regarding which tasks it may be appropriate for.

2 EXISTING METRICS
While some more sophisticated chordal distance (and equivalently
similarity) metrics have been proposed, the most commonly used
by far are still fundamentally binary. Specifically, the widely used
mir_eval package implements many such measures across combi-
nations of a variety of chord features, including root pitch, third
quality, triad type, 7th, and inversion [25]. However, these metrics—
based on the MIREX 2013 evaluation procedure, which is still in
use for the current MIREX—still generally suffer from an equating
of all errors discussed above.

Some metrics treat each chord label as a set of non-privileged
(root and bass information is ignored) pitch classes. Enharmonic
equivalence is assumed such that A♯ and B♭ are the same pitch class.
The precision and recall of these sets (or other measures, e.g., [6];
unordered set comparisons in [7]) can be measured (called Chroma
Precision and Chroma Recall in [23]). These are more flexible metric
than the binary feature-based metrics, but ignoring root and bass
information is often undesired, and there is no understanding of
“how incorrect” a given pitch class is.

Tymoczko discusses several different classes of musical distance
metrics (e.g., in [29]), as well as their correlation in different tonal
contexts. Among them, the class of voice-leading distance metrics
is most closely related to our mechanical distance, and a further
comparison is drawn in Section 3.4. These metrics generally attempt
to quantify the number of steps it would take to transform one
chord to another following a series of voice-leading operations.
Alternative implementations proposed assume both ordered and
unordered pitch class sets, and represent “distance” in a variety of
geometrical spaces.

For all of the above metrics, once distances between each label
and the ground truth are measured, Chord Symbol Recall (CSR; [7])
is typically used to measure the quality of the labels across each
piece by taking a weighted average: weighing each distance (or
similarity) by the duration of the associated segment. Our proposed
metrics (and indeed all of the discussed chord distance metrics) are
fully compatible with CSR in this way.

3 PROPOSED METRICS
3.1 Chord Encoding
In our toolkit, a chord label is fully-described by its root note, type
(major, minor, minor 7, etc.), inversion (from which we can derive
its bass note), and alterations, which include added tones (e.g., +9,
+11), removed tones (e.g., an open fifth on C could be encoded
as a C major triad with a removed E), and replaced tones (e.g., a
C suspended-fourth (“sus”) chord could be encoded as a C major
where the E has been replaced by an F). When a pitch replaces
the bass note, it becomes the bass note (e.g., a Csus4 chord in 1st
inversion has a bass note of F). When the nominal bass note is
removed, we treat the next chord tone (not including added tones)
as the bass note (e.g., in a C major triad in 1st inversion, with an
added F and a removed E, the G is treated as the bass note)Pitches

https://github.com/DCMLab/chord-eval
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may be encoded either as neutral pitch classes (NPCs, MIDI note
number modulo 12), or tonal pitch classes (TPCs, where C♯ and D♭
are distinct) [28]. This versatile protocol enables the representation
of highly interpretive hearings (for example, the encoding of a first-
inversion C triad as an inversion of a cadential 64 chord on a G
root).

3.2 Spectral Pitch Similarity
Spectral Pitch Similarity (SPS) is a measure proposed to evaluate the
similarity between the perceived pitch content of tones or chords
based on relevant psychoacoustic assumptions (see [20] for more de-
tail). In essence, it is a measure of the distance between the partials
of two notes or chords. In [19], SPS (together with voice-leading
distances) was proposed as a cornerstone of bottom-up psycho-
acoustic approaches to explain regularities in tonal-harmonic mu-
sic. Indeed, SPS has been shown to be a good predictor of listeners’
perception in a variety of perceptual tasks. For example, SPS carries
predictive value for tonal fit responses in Krumhansl and Kessler’s
[15] influential probe tone data set [20]. Furthermore, the predictive
power of SPS for listeners’ responses also generalises to unfamiliar
microtonal stimuli, further supporting the psycho-acoustic versatil-
ity of the metric [21]. On the basis of this evidence, we implement
an SPS-based metric for chord evaluation tasks in which timbral
perception, in the broad sense of the term as an emergent prop-
erty of composite pitch events [8], is important. This could, for
example, be the case for automatic accompaniment tasks, or audio
transcription software.

The calculation of the SPS between tones or chords relies on a
spectrogram of the audio. However, since our toolkit is designed to
measure the distance between two chord labels, not two audio clips,
we must first synthesize each label. Broadly, this process works by
creating a MIDI file with the appropriate pitches, and then synthe-
sizing the audio, and calculating the SPS between spectrograms of
the synthesized chords.

By default, we generate three chords per label: in closed form
with its bass note in the 3rd, 4th, and 5th octaves. Alternatively, the
user has the option to specify which pitches in particular to use
for the synthesis by giving a list of potential MIDI note numbers in
a pitches parameter. If given, the notes in the synthesized chord
will be drawn only from that list, where any note number from
the list which is equivalent modulo 12 to a chord tone from our
default process will be included in the MIDI file, and all others will
be discarded. For example, a C major triad with pitches containing
C2, E4, C5, G6, and A6 will generate a MIDI chord with the pitches
C2, E4, C5, and G6. This allows the user to ensure that the voicing
of a chord label corresponds to a particular musical score.

Once the pitches are known, we create the MIDI files by generat-
ing a 1 second note on each resulting pitch, starting at time 0, using
the pretty_midi python package [24] and FluidSynth.By default,
all notes are synthesized using the piano program, but this can be
changed for either chord independently using a parameter. This is
important to note, because from a perceptual perspective, the simi-
larity or fit between notes or chords can be subject to timbre and,
in extension, instrument choice [20]. After synthesis, we compute a
spectrogram for each chord, which may be either a variable-Q trans-
form (VQT, default), a constant-Q transform (CQT), a short-time

Fourier transform, or a mel spectrogram based on the user’s choice.
We then take the central frame from a spectrogram of each chord,
which is used to avoid any percussive noise from the chord’s attack
while also not straying too far into its decay, and compute their
cosine similarity. We then compute the cosine distance between
each pair of spectrograms (since we generate 3 spectrograms per
chord label by default, there are 6 pairs, but there will be only a
single pair if the pitches parameter is used), and return 1 minus
the maximum cosine similarity as the SPS distance.

3.3 Tone-by-Tone Distance
Tone-by-tone distance treats each chord as sets of pitch classes,
which may be either tonal or neutral (see Section 3.1). For each
chord, we then measure the proportion of its pitch classes which are
contained in the other chord. The final distance between the two
chords is one minus the average of each of these two proportions.
When the two pitch class sets are of equal size, the two proportions
will be the same (e.g. for A minor and C major triads, the proportion
for each is 2

3 ). However, the two proportions can differ when one set
is larger than the other (e.g., for A minor and C7, the proportions
are 2

3 and 1
2 respectively, leading to a tone-by-tone distance of

1 − 7
12 = 5

12 ).
This is thus far quite similar to the pitch class set-based met-

rics discussed in Section 2, with the additional allowance for using
tonal pitch classes. We further generalize this understanding by
including parameters that put additional importance on whether
the two chords share the same root (root_bonus, 𝑏𝑅 ) or bass note
(bass_bonus, 𝑏𝐵 ), two features that are often emphasized in MIR
task outputs. By default these two values are both 1, putting impor-
tance on both the bass and the root of each chord. For use cases
in which bass or root notes are of particular importance, positive
values should be preferred. Positive values of bass_bonus are ap-
propriate, for example, if the evaluation context is governed by
thoroughbass or partimento principles, in which the bass voice
has primary structural significance, and upper voices are deter-
mined in terms of intervals from the bass. On the other hand, if
harmonic function is significant to the evaluation, positive values
of root_bonuswill generally provide a more relevant metric.When
𝑏𝐵 = 𝑏𝑅 = 0, the metric is similar to some of those from Section 2.

In total, this calculation is given in Equation 1.𝐶1 and𝐶2 are the
pitch class sets of each chord, 𝑅 is 𝑏𝑅 if the root notes match and
0 otherwise, and 𝐵 is 𝑏𝐵 if the bass notes match and 0 otherwise.
Essentially, a value of 1 (for either 𝑏𝑅 or 𝑏𝐵 ) will measure the
distance as if there was an additional root or bass note in each pitch
class set (and 2 will weight it as an additional 2 notes, etc.). For
example, for A minor 1st inversion and C major, the tone-by-tone
distance would be 1

3 by default, 12 (slightly worse) with 𝑏𝑅 = 1 and
𝑏𝐵 = 0, and 1

4 (slightly better) with 𝑏𝑅 = 0 and 𝑏𝐵 = 1.

𝑎𝑣𝑔

(
|𝐶1 ∩𝐶2 | + 𝑅 + 𝐵

|𝐶1 | + 𝑏𝑅 + 𝑏𝐵
,
|𝐶2 ∩𝐶1 | + 𝑅 + 𝐵

|𝐶2 | + 𝑏𝑅 + 𝑏𝐵

)
(1)

Intuitively, tone-by-tone distance considers chords that share
more pitches to be more similar. We thus expect it to be most
meaningful in “pitch-class counterpoint” contexts in which binary
per-note metrics (“correct” vs. “incorrect”) need to be synthesized
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into a granular, non-binary metric for the entire chord (e.g., for poly-
phonic textures). The metric is also useful whenever fine-grained
evaluations are required, while avoiding aesthetically or music-
theoretically contentious choices of acoustic metrics (such as SPS
above) and voice-leading metrics (such as our mechanical distance
below). In this sense, it may be understood as a deliberately naive
proxy, substituting notational and textural differences for a more
music-theoretically grounded evaluation. Additionally, practition-
ers who wish to prioritize the music theoretical concepts of root
or bass note (as is common), and those who wish to express chord
labels using TPCs (which is becoming more common) have the
flexibility to do so, both features missing from previous proposals.

3.4 Mechanical Distance
Mechanical distance again treats chords as pitch class sets, and
roughly corresponds to a measure of the physical distance between
two chord labels as they are played on an instrument. It can be
viewed as a further granularization of the tone-by-tone distance,
where instead of just measuring what proportion of pitches are
incorrect, we also measure how far away each erroneous note is
from the target chord. One potential use case is during music perfor-
mance evaluation (see, e.g., [11]), for example during instrumental
lessons or for performances involving robotic musicians, where me-
chanical mistakes are common. On the piano, a minor misplacement
of a finger can generate an erroneous tone (e.g. semitone errors).
In tasks involving the automatic evaluation of such performances,
the mechanical distance between an intended set of tones and the
produced set of tones may be more relevant than, for instance, the
spectral relationship between the generated sounds (as in SPS), and
more informative than tone-by-tone distance.

It should be noted that, using default settings, this metric is
quite similar to some of the voice leading distances discussed by
Tymoczko (e.g., in [29])—although here, we consider the bass pitch
to be “ordered” in the sense of it being non-permutable, while
the other pitches are all “unordered”: a novel combination to our
knowledge. While it is true that mechanical distance can be seen as
a generalization of this type of voice leading distance, and is indeed
useful as such, we choose not to use the term “voice leading”, since
doing so would suggest taking into account the larger context of a
chord label (local key, diatonic steps vs. semitones, etc.). It would
also involve complex and often controversial music-theoretical
decisions between, for example, scalar conceptions of root distance
(according to which a root motion by semitone is smaller than
that by step) and Tonnetz-based models (which typically allow only
parsimonious voice-leading operations, and consider root motion
by thirds or fifths to be more “proximate” than motion by step or
half-step).We leave such discussion for future work.

For mechanical distance, we first calculate the bass distance as
the distance between the bass notes of each chord, times some
bass_weight 𝐵 (1 by default). By assigning a special status to the
bass, this metric integrates mechanical (ergonomic) and musical
intuitiveness. Jazz pianists are known to associate chord voicings
with the kinaesthetic experience of “hand positions” between outer
notes, while similar intersections between thoroughbass practice
and fingerings have been historically established in 18th-century

Figure 1: Example spatial distance pairings of C vs. Am (left,
distance 5), CM7 vs. Am/C (center, distance 4), and CM7 vs.
G/B (right, distance 3). Edge labels are semitone distance,
bass notes have a shaded background, bold red edges corre-
spond to bass distance, and the blue dashed edge connects
unmatched notes.

keyboard treatises [1]. By default, our “mechanical distance” dis-
tance is measured in semitones (as is natural on a piano keyboard),
but users may also supply any custom distance measure, provided
it assigns a value to each semitone interval from 0 to 11 (e.g., a user
may choose to measure distance in fifths, where C is adjacent only
to F and G). This parametric freedom makes the metric adaptable
to different organological constraints beyond those of keyboard
instruments.

We then create a fully-connected bipartite graph between the
pitches of each chord, where each edge’s weight is the distancebe-
tween the two pitches. We calculate a minimum weight full match-
ing of the graph [10], and take the sum of the resulting edge weights
as a matched distance (if the bass notes are matched together in
this graph, they are left out of this sum, since they are included in
the bass distance). Finally, if there are any remaining unmatched
pitch classes, for each unmatched pitch class in the larger chord,
we take the minimum distance from it to any pitch class in the
smaller chord. The mechanical distance between the two chords is
the sum of these “unmatched” distances, the bass distance, and the
matched distance.Through this process, we have paired every pitch
class from each chord to at least one pitch class in the other chord.

Examples of these pairings can be seen in Figure 1. Here, notice
that there are no unmatched edges in the CM7 vs. G/B pairing:
Since the minimum weight full matching of the graph only leaves
CM7’s bass note C disconnected (which is already paired with G/B’s
B), rather than the B (as in the CM7 vs. Am/C case), there are no
unmatched pitch classes.

4 EXAMPLES
To investigate each metric’s results for different chord pairs, we
present distance plots for each in Figure 2. Here, one chord is al-
ways a C major triad in root position, while the other varies across
different roots, types, and inversions. The top plot shows SPS dis-
tance, the middle shows Tone by Tone distance, and the bottom
shows mechanical distance, all with default settings.

In this context, SPS correlates somewhat with tone-by-tone, but
does show more gradations for its penalties. For example, notice
that every chord with root G—with the exception of diminished
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Figure 2: Selected distances (top: SPS; middle: tone-by-tone;
bottom: mechanical) from a C major root position triad to
various other chords with default settings (o and % signify
diminished and half-diminished).

7th chords—has an identical tone-by-tone distance to the C major,
since they each share exactly 1 note, and never the bass. However,
SPS tends to prefer 1st inversion chords (and in particular triads)
where the voicing most similar (i.e. the G in both chords occurs as
the third-lowest note). Likewise for chords with root E, SPS prefers
them in 2nd inversion. Mechanical distance is quite distinct from
the others, having a strong preference for those chords whose bass
note is close to C in semitone space, gradually getting worse the
larger the interval grows.

4.1 Pairwise Comparisons
Often the metrics correlate with each other. Thus we perform pair-
wise comparisons between the metrics to better understand cases
in which each differs significantly from the others. To do so, we
computed the distance—using each metric with default settings—
between all pairs of chords with any NPC root; any chord type
of major, minor, diminished, augmented, dominant 7th, major 7th,
minor 7th, minor major 7th, diminished 7th, half-diminished 7th,
augmented 7th, and augmented major 7th; any inversion; and no
alterations. Then, for a given distance 𝑑 , we compute its “standard-
ized” value 𝑑′ by first computing that metric’s mean 𝜇 and standard
deviation 𝜎 across all chords, and setting 𝑑′ = (𝑑 − 𝜇)/𝜎 . That is,

𝑑′ now expresses 𝑑 in terms of its distance away from that met-
ric’s mean, measured in standard deviations. Then, we searched
for chords in which each pair of metrics disagreed the most in this
standardized form.

4.1.1 SPS and Tone by Tone. Chord pairs which have a significantly
lower standardized SPS distance than standardized tone-by-tone
distance generally differ in both root and bass pitch. Their bass
notes tend to differ by only a semitone (pitch height is a salient
property for SPS), at least one other tone matches, and matching
tones occur in the same place in the chord’s voicing (e.g., as its
upper note). Examples include Cm7 (C, E♭, G, B♭) and G♭ major,
2nd inversion (D♭, G♭, B♭); Cm, 1st inversion (E♭, G, C) and D7 (D,
F♯, A, C); and Cdim, 1st inversion (E♭, G♭, C) and F major (F, A, C).
Each of these pairs has a standardized SPS distance of around −1
and a standardized tone-by-tone distance around 0.3.

Intuitively, chord pairs with a much lower standardized tone-by-
tone distance than SPS distance tend to match in both root and bass
note, and differ by a semitone for other non-matching notes. In
cases where their bass notes differ, the interval tends to be relatively
large, around a major or minor third. Examples include C major (C,
E, G) and C minor (C, E♭, G); C major, 1st inversion (E, G, C) and
C7, 2nd inversion (G, B♭, C, E); and C minor, 1st inversion (E♭, G, C)
and Cm7, 2nd inversion (G, B♭, C, E♭). Interestingly, these examples
all again have a standardized SPS distance of around −1, but now a
standardized tone-by-tone distance of −2.5 to −2.

4.1.2 SPS and Mechanical. Chord pairs for which the standardized
mechanical distance is significantly lower than the standardized
SPS distance are those where each note differs by exactly one semi-
tone, for example C major and D♭ major, or C diminished and B
diminished. This differs from the above SPS < tone-by-tone case due
to the absence of any note overlap, which SPS penalizes severely.
These examples have a standardized SPS distance around 1.5 and a
standardized mechanical distance around −1.3. On the other hand,
standardized SPS is lower than standardized mechanical distance
for chord pairs whose bass notes are a tritone apart, and whose
other notes are either far apart (maximizing mechanical distance)
or match (minimizing SPS distance). These include, for example, C
diminished (C, E♭, G♭) and G♭ diminished (enharmonic to G♭, A, C);
C minor, 1st inversion (E♭, G, C) and G♭ diminished, 1st inversion
(enharmonic to A, C, G♭); and C minor (C, E♭, G) and Cm7, 2nd in-
version (G, B♭, C, E♭). These pairs have standardized SPS distances
from −1.9 to −1.5 and standardized mechanical distances from 1.5
to 2.

4.1.3 Tone by Tone and Mechanical. Chord pairs for which the
standardized mechanical distance is significantly lower than the
standardized tone-by-tone distance are again those where each
note differs by exactly one semitone (trivially, their tone-by-tone
distance is the maximum possible 1). Excluding these, examples
are similar, though the pairs now match in 1 (non-bass) tone: for
example, C minor (C, E♭, G) and B major (enharmonic to B, E♭,
G♭); as well as C minor and G major, 1st inversion (B, D, G). These
chords have a standardized mechanical distance of around −1.7
and a standardized tone-by-tone distance of around 0.3. Those for
which the standardized tone-by-tone distance is significantly lower
than the standardized mechanical distance are similar to the SPS <
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Figure 3: The first two bars from Mozart K279-2 [9], with
ground truth labels above the score, and two potential esti-
mates below. Labels are notated as “chord:inversion”.

mechanical case, again including chords whose bass notes differ by
a tritone and whose other notes match. Here, though chords also
tend to share their root (since tone-by-tone has 𝑏𝐵 = 1), thus also
including many chords which differ only by inversion. For example,
C diminished (C, E♭, G♭) and C diminished 7th, 2nd inversion (G♭,
B♭♭, C, E♭); and C7, 1st inversion (E, G, B♭, C) and C7, 3rd inversion
(B♭, C, E, G). These pairs have a standardized tone-by-tone distance
around −2 and a standardized mechanical distance around 1.

4.2 A Case Study
In Figure 3, we present a musical excerpt with annotated ground
truth labels and labels that could have been output by a two different
chord estimation models. The models each achieve a binary CSR of
31.6. However, while they perform similarly in terms of SPS distance
(20.9 for the top and 19.9 for the bottom), their other two distances
differ significantly. The bottom outperforms the top in tone-by-
tone 24.5 to 33.4, but the top outperforms the bottom in mechanical
distance 1.47 to 2.11. This difference in preference highlights the
variability in evaluation, as well as the importance of picking the
appropriate metric for the task.

5 CONCLUSION
In this paper, we have presented the chord_eval toolkit for the
evaluation of chord label accuracy. We have argued that, given the
wide variety of relevant tasks and the many different potentially
important aspects of harmony and chords, an appropriate metric
should be chosen based on the desired use case. Our toolkit contains
(in addition to the traditional binary) 3 metrics: SPS distance, based
on Spectral Pitch Similarity [20] and useful for acousto-perceptual
evaluation; tone-by-tone distance, which (similar to previous work)
measures the proportion of correct tones in a target chord, and can
be seen as a rough proxy for simple music theoretical intuitions,
particularly with our novel inclusion of bass and root bonuses and
tonal pitch classes; and mechanical distance, similar to existing
voice leading distances, which is a further granularization of tone-
by-tone, and includes a novel special handling of the bass note.

We have specifically left out a deeper (and much more compli-
cated) consideration of the key and the holistic tonal context here,
instead focusing first on the distance between a pair of chord la-
bels in isolation. However, a complete evaluation of the harmonic
labeling of a musical composition requires this context, which we
intend to address in future work. Indeed, for models which attempt

to output this full harmonic structure, a metric which takes the
full tonal context into account would be greatly beneficial—if not
essential—to continued improvement.
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