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Introduction

In machine listening, data scarcity is a significant chal-
lenge, particularly in Industrial Sound Analysis (ISA) [1],
where openly available datasets are limited. Most exist-
ing datasets consists of laboratory recordings that mimic
real world scenarios [1, 2, 3]. Acquiring accurately la-
beled data, essential, is resource-intensive, requiring sub-
stantial time and effort. This challenge is exacerbated in
real-world applications, where suitable training data is
often only available on-site.

As a possible solution, data augmentation can be applied
to reduce data sparsity by adding small amounts of noise
to the available data points [4]. Although data augmen-
tation is effective in domains such as computer vision and
speech recognition, these methods often fail in cases of
extreme data scarcity, where the available data do not
cover the full input space [5, 6].

In this work, we propose using Generative Adversarial
Networks (GANSs) [7] to generate synthetic training data.
Specifically, we train a GAN on limited available data
and use it to synthesize mel-spectrograms, significantly
expanding the dataset. We then train a classifier on the
combined dataset. Unlike traditional methods, our ap-
proach avoids synthesizing audio, as the GAN generates
mel-spectrograms directly, and the classifier is trained
on these spectrograms without the need for audio recon-
struction.

We hypothesize that the proposed approach, akin to data
augmentation, introduces realistic variations by learn-
ing possible alterations within each class.We evaluate
our approach against a baseline, both with and with-
out additional data augmentation, using two distinct ISA
datasets. To simulate real-world data scarcity, we arti-
ficially limit the training data in our experiments. Our
results highlight the conditions under which our method
is effective and identify areas for further improvement.

Related Work

GANSs [7] have shown remarkable success in generating
high-fidelity data in various audio domains, e.g., speech
synthesis [8], music generation [9], and sound effect pro-
duction [10]. A GAN comprises two sub-networks—
a generator and a discriminator—with opposing goals:
the generator transforms a a random latent vector into
realistic data, while the discriminator distinguishes be-
tween real and synthesized data. These sub-networks
can employ diverse architectures, such as Convolutional
or Transformer-based models.

WaveGAN [10] generates raw audio waveforms using a
convolutional architecture with stacked 1D convolutions

in both the generator and the discriminator. However,
due to the length of the waveforms and the limited recep-
tive field of convolutions, it is constrained to producing
only 1-second clips. The same work introduced Spec-
GAN, which generates magnitude spectrograms using 2D
convolutions. While SpecGAN produces realistic spec-
trograms, converting them to audio via the Griffin-Lim
algorithm [11] and inverse STFT results in lower audio
fidelity compared to WaveGAN.

GANSynth [9] addresses the limitations of Wave-
GAN and SpecGAN by generating high-fidelity mel-
spectrograms for longer audio sequences. It adopts the
Progressive GAN framework [12], gradually increasing
resolution during training to produce high-quality out-
puts. The generator and discriminator use stacked 2D
convolutional layers, with the generator incorporating a
one-hot class label vector, inspired by Conditional GAN
[13]. Additionally, a classifier is appended to the dis-
criminator, leveraging Auxiliary Classifier GAN [14] to
enhance training. This class-label mechanism enables
the generation of diverse, class-specific outputs, making
it suitable for our application.

Previous studies have explored GANs for generating
training data in audio classification. Aswathy et al. [15]
used WaveGAN for environmental sound classification,
demonstrating performance improvements over standard
augmentation methods. Similarly, Yang et al. [16] re-
ported a 10% improvement in acoustic scene classifica-
tion using WaveGAN-based augmentation in the DCASE
2018 Challenge Task 1A. However, both studies faced
limitations, such as generating only 1-second audio clips
at 16 kHz. To address this, Aswathy et al. [15] up-
sampled and extended the audio, while Yang et al. [16]
stacked 2-second snippets to achieve 10-second segments.
Later, Aswathy et al. [17] improved output length by
incorporating transposed convolutions, enabling the gen-
eration of longer audio clips (around 4 seconds).

GANSynth offers advantages over WaveGAN, such as
training a single GAN for an entire dataset using class-
label vectors, unlike WaveGAN, which typically requires
one GAN per class. Additionally, GANSynth generates
mel-spectrograms directly, avoiding noisy audio conver-
sions, as classifiers are trained on these spectrograms.

Text-to-audio methods have also been explored for data
generation [18, 19], but their applicability to ISA is
limited due to the domain-specific nature of industrial
sounds, which are unlikely to be accurately captured by
general models.
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Datasets

In order to thoroughly evaluate our proposed method,
we use two datasets with different signal characteristics.
Basic features of each dataset (file duration, number of
classes, etc.) can be found in Table 1. We do not report
the size of each training set because we varied it in our
experiments to evaluate different levels of data scarcity.

IDMT-ISA-METAL-BALLS (MB) [1]: This contains a
collection of audio recordings of three differently-coated
metal balls rolling down a metal slide. The classification
is to detect the surface of the ball: eloxed, coated, or
broken. The sounds in the MB dataset are continuous
(rather than impulses).

IDMT-ISA-PUCKS (Pucks) [20] consists of one-minute
audio recordings capturing impulse responses from plas-
tic pucks 3D printed using four different materials. The
classification task involves identifying the material of the
puck in a recording, with an additional fifth class rep-
resenting recordings without puck impulses. For train-
ing, we use files with quieter background noise (vol_050),
while evaluation is performed on files with louder noise
(vol_100). Unlike continuous signals, the Pucks dataset
contains impulse sounds, testing our method’s ability to
synthesize such signals. To address memory constraints,
we extract 5-second clips with 50% overlap from the 1-
minute recordings, resulting in 23 clips per file for train-
ing.

Table 1: Dataset details.
Dataset | Classes # Files (Test) File duration Sample rate

MB 3 171 04s 44.1 kHz
Pucks 5 75 60 s 44.1 kHz

Proposed Method

Similar to real-world applications with limited data, we
assume the availability of only a small amount of labeled
real data for training. Our method uses this data to train
a GAN capable of generating a much larger amount of
labeled synthetic data. We then use the GAN to gen-
erate such data in the form of Mel-spectrograms, com-
bining the synthesized spectrograms with those from the
original real data. This combined dataset is finally used
to train a classifier, with possible data augmentation ap-
plied to all data points (we investigate the effect of includ-
ing data augmentation in our experiments). An overview
of our method can be seen in Figure 1.

Data Aug.
(optional)

Figure 1: An overview of our proposed method.

GAN

Our method employs, GANSynth [9] to generate labeled
spectrograms, treated as single-channel images. We re-
tain most of the original hyperparameters but modify
four key settings, detailed in Table 2. First, we reduce

Images per Stage from 800k to 8k to shorten training
time from a week to a few hours. However, this setting
produced poor results for the Pucks dataset, so we in-
creased it to 80k, yielding better outcomes.

The remaining hyperparameters relate to GANSynth’s
progressive resolution training. We use the original spec-
trogram settings: a Mel-spectrogram with an FFT size
of 2048 samples and a step size of 512 samples, resulting
in 1024 frequency bins. Audio files are adjusted to the
nearest power-of-two length, determining the Final Reso-
lution. The number of training stages (Resolutions) is set
to one less than the base-2 logarithm of this resolution,
with the Start Resolution being two frames.

Additionally, We modify GANSynth one-hot target vec-
tor, originally used for pitch control, to represent dataset
class labels instead. This adaptation ensures the model
generates class-specific spectrograms suitable for our ap-
plication.

Table 2: GANSynth hyperparameters used for each dataset.

GANSynth parameter ‘ MB Pucks
Images per Stage 8,000 80,000
Final Resolution (32,1024) (512, 1024)

Resolutions 5 9
Start Resolution (2, 64) (2, 4)

Classifier

We use the classifier that had previously shown state-of-
the-art results on each dataset. In all cases, that was
a Convolutional Neural Network (CNN)-based classifier,
with a single feedforward layer on top with softmax acti-
vation and dimensionality equal to the number of classes
in the dataset. Categorical cross-entropy loss is used
during training, and all classifiers were trained with the
Adam optimizer [21] with a learning rate of 0.001. MB
used a batch size of 256 and trained for 70 epochs, while
Pucks used 256 for 1,500.

For MB, we use the CNN420 ResNet architecture from
[6]. We use average pooling after each ResNet block,
while max global pooling is applied after the final con-
volutional layer. For Pucks, we use a 3-layer CNN with
3x3 convolutions on each layer as in [20]. During train-
ing, the classifier takes as input only 5-second clips: both
extracted from the original files with 50% overlap and
synthesized by the GAN. At inference time, when run on
the real 1-minute recordings from the Pucks test set, we
first cut each 1-minute input into 23 5-second clips (with
50% overlap) and run the classifier on each clip. Those
23 classifier outputs are then averaged in order to gener-
ate the final output for a given 1-minute audio file, as in
[20].

Experiments and Results

Experimental Design

To systematically evaluate our method on each dataset,
we imposed various levels of data scarcity by only using
small randomly chosen subsets of each set for training,
ranging from four to 360 real data files per class depend-
ing on the dataset. This setup is designed to evaluate



whether our method is able to compensate for the lack of
available real data. We trained a GAN on each of these
subsets, and used it to generate large amounts of corre-
sponding synthetic data. Specifically, we generated 3,000
files per class for MB and 1,000 per class for Pucks'. Fi-
nally, the classifier was trained five times on this synthetic
data plus that exact subset of real data (i.e., the same
subset that was used to train the corresponding GAN).
We report the mean and standard deviation of the clas-
sification accuracy on each dataset’s pre-defined test set
across these five trials®?. As a baseline, we also trained
each classifier five times on only that real data subset.

To evaluate the effectiveness of our method in comparison
to, and in combination with, data augmentation, we also
included a version of the baseline and our method both
with and without data augmentation. For our method,
this data augmentation was applied to both the real and
the synthetic data. We used different combinations of
augmentations and hyperparameters for each dataset,
taken from the best-performing classifier on each dataset
from previous work. Specifically, for the MB dataset, we
applied the augmentation technique proposed in [5] (see
Table 2 therein for a full list of the augmentations used)
with a probability of 0.5 every time a data point was
fed to the model for training. For the Pucks dataset, we
applied mixup (with a probability of 1) as well as two im-
age augmentations randomly chosen from a pre-defined
set, each with a random magnitude and probability of
0.5. These data augmentation settings are identical to
those used in the state-of-the-art classifier on the Pucks
dataset [6] (see Appendix B therein for the full list of
augmentations and associated parameters).

Results

Fig. 2 presents our method’s classification accuracy on
the MB dataset. The x-axis refers to the number of real
audio files per class used to train the GAN, and likewise
included when training the classifier. It is clear that the
baseline classifier struggled to perform well with fewer
than 108 training data points per class, but reached up to
90% and higher after that point. Data augmentation im-
proved the baseline in all cases, with its benefit decreas-
ing as more real data was added. Our proposed method
outperformed the baseline (also with data augmentation)
in cases of severe data scarcity (< 18 files per class),
while our method with data augmentation performed the
best of all methods with < 72 files per class. With more
than that, all methods outperformed the baseline with-
out augmentation to a similar degree. Overall, on MB,
our method does indeed show a marked performance im-
provement over what is possible with just real data given
a moderate or greater level of data scarcity.

The results on the Pucks dataset are shown in Fig. 3,

1We found that adding more data would generally improve per-
formance, but there was a point of diminishing returns. For each
dataset, we kept adding additional synthetic data until this point
was reached.

2for MB, we repeated this entire process three times (i.e., we
trained three GANs) and averaged the accuracy values across the
resulting 15 trials. We found almost no difference between the three
GANSs and therefore only trained one GAN for Pucks dataset.
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Figure 2: Mean classification accuracy on the MB dataset
with varied levels of data scarcity. Vertical bars indicate stan-
dard deviation.

where the baseline outperformed all other methods. “10”
training data points refers to the number of 5-second clips
per class used for training, extracted from the original
training files. These were extracted from one, two, or
three original training files for the points 10, 20, and 30
on the x-axis, respectively. Here, adding data augmen-
tation actually shows a trend towards decreasing perfor-
mance, especially when combined with our method. The
GAN struggled to produce realistic data for each class,
and adding additional noise through the augmentations
therefore only served to further exacerbate the issue.
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Figure 3: Mean classification accuracy on the Pucks dataset
with varied levels of data scarcity. Vertical bars indicate stan-
dard deviation.

Conclusion

In this work, we proposed a method for improving classi-
fiers for industrial audio data with limited training data
using Generative Adverserial Networks (GANs). Such
scarcity is often present in the Industrial Sound Analysis
(ISA) domain due to the difficulty and expense of gather-
ing and labeling large quantities of real-world data. Our
method trains a GAN on a small amount of real data,
and uses the GAN to generate much larger amounts of
synthetic data for each class. We then combine this syn-
thesized data with the original real data, and train a
classifier on the resulting set. We hypothesize that this
method functions as a “learned” form of data augmen-
tation, where the GAN generates additional variety for
each class.

We evaluated our method on two different datasets and
compared it to a supervised baseline with and without
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data augmentation: Metal Balls (MB), and Pucks. Our
proposed method improved the results compared to the
baseline on MB, especially when training data is scarce,
showing its potential for audio classification. The results
on Pucks were mixed. After a thorough investigation, we
hypothesize that the time- and frequency-varying signal
of Pucks is more difficult for the GAN to reproduce.

Nonetheless, our method’s ability to achieve an increase
in performance on the MB dataset shows that the ap-
proach has merit, and that future work is warranted. We
would like to test our method’s performance with a wider
range of classifiers, including larger and smaller models
for each dataset. We also intend to investigate ways to
improve the GAN'’s performance, for example by starting
from some pre-trained GAN that is already able to pro-
duce realistic audio. We would also like to see whether
other synthesis methods besides a GAN, e.g., latent dif-
fusion [22], might lead to better results.
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