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Abstract—Automatic music transcription (AMT) takes a music record-
ing and outputs a transcription of the underlying music. Deep learning
models trained for AMT rely on large amounts of annotated training
data, which are available only for some domains such as Western classical
piano music. Using pre-trained models on out-of-domain inputs can lead
to significantly lower performance. Fine-tuning or retraining on new
target domains is expensive and relies on the presence of labeled data. In
this work, we propose a method for taking a pre-trained transcription
model and improving its performance on out-of-domain data without
the need for any training data, requiring no fine-tuning or retraining
of the original model. Our method uses the model to transcribe pitch-
shifted versions of an input, aggregating the output across these versions
where the original model is unsure. We take a model originally trained
for piano transcription and present experiments under two domain shift
scenarios: recording condition mismatch (piano with different recording
setups) and instrument mismatch (guitar and choral data). We show that
our method consistently improves note- and frame-based performance.

Index Terms—Automatic music transcription, Zero-shot learning, Do-
main adaptation

I. INTRODUCTION

Automatic music transcription (AMT) is one of the fundamental
tasks in the field of Music Information Retrieval, which involves
taking an input music recording and outputting a transcription of the
underlying music. In this work, we imagine a simple, real-world use
case. A user has access to an AMT model and would like to use it
to transcribe a music collection. The user has no access to labeled
data and has no way to further train or fine-tune the model—the
model is treated as a black box that takes as input an audio file and
outputs a transcription in some form. However, the user would like
to produce the highest quality transcriptions possible. Our proposed
method targets exactly this use case.

The output of AMT models comes in many forms. The most
common is a piano roll, a 2D matrix where the vertical axis represents
pitch and the horizontal time. The pitch axis is typically in semitone
resolution while the time axis has some small resolution like 40 ms.
The model outputs are floating values between 0 and 1, and are
typically thresholded at 0.5 as a post-processing step to produce a
binary piano roll. The Onsets & Frames [1] model extended this
strategy to two piano rolls: one indicating the presence of an onset
at a given pitch and time, and the other representing the presence
of a note in general. They achieved state-of-the-art performance and
became the de facto standard model to compare against (which we
do as well). Its multiple piano roll strategy has become commonplace
and was even extended to include additional offset or note velocity
piano rolls [2], [3]. Post-processing involves first thresholding the
outputs and then converting the resulting binary piano rolls into note
events, each with an onset and an offset. Recently, a few models
have been proposed that output other formats, typically to allow for
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token-based language models such as Transformers to be used. For
example, [4] outputs a musical score directly in a text-based score
format, and [5], [6] define and use a token-based output similar to
MIDI, where each token represents something like a MIDI message.
Still, such models remain the clear minority.

Regardless of the exact model, as with nearly all deep learning
approaches, there is a reliance on large amounts of labeled training
data from the same domain (instrument and recording conditions) as
the test data. For example, the Onsets & Frames model trained on
a large dataset of piano music suffers from a loss in performance,
even when just tested on another piano dataset with a slightly different
recording setup [1]. This data mismatch problem, called domain shift,
is found in many fields of audio processing, and existing strategies
for dealing with it in AMT are described in the Section II. For our
example use case above, domain shift represents a real problem, since
no training data in the target domain is available to our user, and the
user has no access to retrain the model in any case.

In this paper, we describe Transcription Adaptation via Pitch Shift-
ing (TAPS), an approach that is indeed able to improve performance
given our use case above. It involves no additional data, and requires
neither model retraining nor access to the model code itself to work.
TAPS treats a model simply as a black box that takes as input an
audio file and outputs one or more float-valued piano rolls. It works
by transcribing pitch-shifted versions of the input audio, aggregating
outputs where the model is unsure.

II. RELATED WORK

Domain shift represents a real problem for AMT, especially
because large datasets are only available for piano and very few
other instruments. As such it has been the focus of a number of
recent works. Nonetheless, we were unable to find any that would
work in our example use case above. None are able to take an existing
pre-trained model and improve its performance under domain shift
without access to the model itself (e.g., for retraining) or additional
data, although some similar work exists in Computer Vision (e.g.,
[7]).

Some approaches rely on a manipulation of the model’s train or
test data to improve generalization performance. For example, [8]
thoroughly investigates the application of a variety of data augmen-
tation techniques at train time, showing that their use can improve
performance under domain shift. They point specifically to “timbral
diversity” in the training set as the cause for this improvement. Mean-
while, [9] looks into various normalization and data manipulation
techniques, showing that certain methods of normalization and feature
projection on the training and test data can reduce the domain shift
itself by making the test data more similar to the training data.

Other approaches for AMT rely on fine-tuning a model on the
target domain, though on comparatively little—or at least more easily-



labeled—data. For example, [10] proposes pre-training a general
(not for a specific instrument) model on large amounts of easy-to-
produce synthesized data, then fine-tuning it on the target domain
(instrument) with relatively small amounts of labeled data. [11]
proposes a method—later also used by [12]—to train or fine-tune a
model without relying on hand-labeled data (or at least hand-aligned
labels) at all. They instead rely on coarse-grained musical scores
as labels in the target domain, using the Expectation-Maximization
algorithm to improve model performance in a self-supervised fashion.

Some approaches rely on no labels in the target domain, instead
applying self-supervised learning to fine-tune or train a model given
only unlabeled data from the target domain. For example, [13] use
Virtual Adversarial Training, transcribing a noisy and a clean version
of each input spectrogram and using a loss function to try to make the
outputs more similar to each other. Similarly, [14] relies on cross-
version consistency, using a teacher model (trained on the source
domain) to label pairs of data points in the target domain that are
known to have the same underlying representation (e.g., multiple
performances of the same musical piece), and training a new model
using matched labels. These methods still rely on additional training
of the model which is not always possible, and our method avoids.

Pitch Estimation with Self-Supervised Transposition-Equivariant
Objective (PESTO) [15] does not address domain adaptation explic-
itly, but it deserves mention nonetheless for being an inspiration for
our approach. It is able to train a model from scratch using only
unlabeled data. At train time, the (unlabeled) inputs are transposed
by a known number of semitones, relying on the fact that this should
result in a known shift in the model’s output (by the same number
of semitones). The loss function is designed to enforce this property,
and they show that it is able to perform monophonic transcription,
but do not extend the work to tests on polyphonic input.

III. PROPOSED METHOD

In this section we describe our method, Transcription Adaptation
via Pitch Shifting (TAPS). Given a collection A of audio files and a
transcription model that takes as input an audio file and outputs piano-
roll-shaped activation matrices with values between 0 and 1, TAPS
generates improved output activations in the same form. It does that
through transcribing pitch-shifted versions of the input, aggregating
outputs across those versions where the model is uncertain.

Note that we assume the model outputs somewhat reasonable
values. If a model outputs completely (or mostly) random values, we
expect TAPS to perform poorly, since it relies on those outputs. We
also require that the piano roll’s frequency resolution be semitones,
though we intend to investigate similar methods on finer-grained
outputs in future work. For simplicity, we initially describe the case
where the transcription model outputs only one piano roll for an
input, extending it to multiple outputs in Section III-B.

TAPS’s design is similar to a mixture of experts model [16] where
the “experts” are the model itself run on pitch shifted input. We
pitch shifting rather than other audio data augmentations such as EQ
curves and time stretching because pitch shifting forces the model
to use a different output path for the same data after the shift.
That is, the model’s probability of a C4 being present is calculated
using the same neural network nodes before and after EQ or time
stretching. However, after pitch shifting, when the note becomes a
C#4, a completely different calculation is performed. Nonetheless, an
investigation into additional data augmentations is intended for future
work.

A. Single Piano Roll

We first generate 2S pitch-shifted versions of each input, where
S is a hyperparameter denoting the maximum pitch shift amount in
semitones (it is doubled because we pitch shift each input both up and
down). In our implementation, we use the Pyrubberband package1.
Specifically, for each integer s where −S ≤ s ≤ S, we pitch shift the
original audio by s semitones. After this process, we have 2(S + 1)
input files per original input, which we denote as ai,s (i denoting
the file’s index in the original collection A, and s denoting the pitch
shift amount in semitones). The transcription model is run on each
of these ai,s, generating a piano roll-like probability matrix P i,s for
each.

We then find each element of each P i,0 where the model is unsure
(only looking at the non-shifted outputs here), defined as those greater
than ϵ and less than 1 − ϵ. The set of all such indexes i, t, and f
(where t and f index along the time and frequency dimensions of
each piano roll, respectively) is denoted as U as in Equation 1.

U := {(i, t, f) : ϵ < P i,0
t,f < 1− ϵ} (1)

The global average unsure output across all (shifted and non-
shifted) inputs is then calculated as µG in Equation 22. Note that we
sum across only those shifted and non-shifted outputs corresponding
to unsure non-shifted outputs. The pitch shifting adds some noise, so
when the non-shifted output is already sure, we simply trust it and
ignore the shifted outputs entirely.

µG =

∑
(i,t,f)∈U

S∑
s=−S

P i,s
t,f+s

2|U |(S + 1)
(2)

Finally, we calculate the final output P i for each input audio.
For all (i, t, f) /∈ U , the value is simply copied over from P i,0.
However, unsure elements ((i, t, f) ∈ U ) are changed. First, for
each unsure output, the average value across all corresponding pitch-
shifted outputs is calculated as µ(i, t, f) in Equation 32). Then, P i

t,f

is set as in Equation 4. If µ(i, t, f) < µG (and thus TAPS estimates
that outputs to be a 0), the equation linearly scales µ(i, t, f) from the
range (0, µG) to the range (0, 0.5). Likewise, values from the range
(µG, 1) are scaled to the range (0.5, 1). This allows transcription
models that use 0.5 as a threshold in post-processing (as is most
common) to operate that way, while downstream tasks that use the
output as probabilities can also do so.

µ(i, t, f) =

S∑
s=−S

P i,s
t,f+s

2(S + 1)
(3)

P i
t,f :=

{
µ(i,t,f)
2µG

if µ(i, t, f) < µG

1
2
+ µ(i,t,f)−µG

2(1−µG)
if µ(i, t, f) ≥ µG

(4)

Our decision to compare the model’s outputs to µG rather than
some simple threshold like 0.5 is designed for cases where its unsure
outputs might be biased in one direction or the other. This choice is
investigated further in the experiments in Section IV.

1https://github.com/bmcfee/pyrubberband
2The frequency bin f + s is sometimes outside of the output range of the

model. For simplicity, this is left out of our equations, but such outputs are
skipped and the denominator is reduced by one for each occurrence.
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B. Extending to Multiple Piano Roll Outputs

The extension of TAPS to models that produce multiple output
piano rolls is straightforward. We simply treat each output piano roll
type completely independently. For example, if a model outputs both
onset and a frame activation piano rolls, we perform the above process
twice, calculating two unsure index sets U , two global averages µG,
and two final output piano rolls P i—one for each type of piano roll.
This allows TAPS to handle cases where the model’s output piano
roll of each type might be biased differently.

IV. EXPERIMENTS

A. Setup

As mentioned, our method (TAPS) could be applied to any
transcription model that outputs piano-roll-shaped activations of any
kind, be they frame, onset, or offset. In our experiments, we have
chosen to use the Onsets & Frames model [1], a CNN which outputs
both frame and onset activations. To generate note-based outputs,
we follow the same decoding process as in the original work. It is
no longer the state-of-the-art method, but it is relatively small and
simple to train compared to more recent methods, and serves our
purposes well for initial experimentation. The model we used was
trained on the MIDI and Audio Edited for Synchronous TRacks and
Organization (MAESTRO) dataset [17], a large dataset of Western
classical piano music with aligned MIDI files and (non-synthesized)
audio recordings from a Yamaha disklavier. We tested TAPS on five
datasets across three domain-shift scenarios:

No Domain Shift: the test split from MAESTRO [17], 178
recordings from the Yamaha Piano e-Competition identical to the
transcription model’s training data in terms of recording condition.

Recording Condition Shift: Midi-Aligned Piano Sounds (MAPS)
[18] (the non-synthesized, music subsets) and Saarland Music Data
(SMD) [19], containing recordings (60 and 50 respectively) of
Western classical music from a Yamaha disklavier, but with a different
recording condition as MAESTRO.

Instrument Shift: GuitarSet (GS) [20] and Daghstuhl ChoirSet
(DCS) [21]. For GS, the microphone subset containing 360 recordings
of acoustic guitar from a microphone from 5 genres (rock, singer-
songwriter, bossa nova, jazz, and funk), including both soloing and
comping. DCS contains recordings of a cappella choral music. We
use the 20 Full Choir and Quartet recordings of Locus Iste and Tebe
Poem taken from the stereo microphone.

As in [1], in the presence of a sustain pedal on piano, we extend the
offset position of each note to either the next onset at that pitch or the
end of the sustain pedal. We report note- and frame-based Precision,
Recall, and F1 values from mir eval [22] with default parameters.
The note-based values are reported with an onset tolerance of 50
ms and an offset tolerance of 20% of the note’s duration or 50 ms,
whichever is larger. Frame-based metrics are pre-notes, where the
frame activations are taken directly from the model’s output.

TAPS has only two hyperparameters: the uncertainty hyperpa-
rameter ϵ and the maximum pitch shift S. We set these based on
performance on the synthesized data from the SptkBGAm subset of
MAPS which are not included in our evaluation. We tried ϵ values of
0.1, 0.2, 0.3, and 0.4 and found only a minimal effect. 0.2 showed
the best performance by a slight margin, so we use it for all of our
experiments. We tested values of S from 2 to 10, and found it to have
a large effect on runtime, since the model must produce 2(S + 1)
transcriptions per input, but again only a small effect on performance,
with larger values generally performing slightly better. We use S = 8
for our experiments, which exhibited the best performance on the

Notes Frames
Dataset Method P R F1 P R F1

MAPS
O&F 81.0 76.0 78.3 85.1 75.4 79.8
TAPS(0.5) 86.3 73.2 79.0 89.3 73.1 80.1
TAPS(µG) 85.5 78.5 81.7 88.0 77.0 81.9

SMD
O&F 97.7 88.0 92.5 51.9 90.2 63.3
TAPS(0.5) 99.0 85.2 91.4 53.3 89.7 64.3
TAPS(µG) 98.8 88.5 93.2 52.6 91.4 64.2

GS
O&F 65.5 70.9 66.9 72.1 63.6 66.5
TAPS(0.5) 74.9 67.6 69.4 76.7 61.6 67.2
TAPS(µG) 69.3 73.7 70.2 75.3 65.1 68.9

DCS
O&F 14.1 22.3 17.1 69.3 37.2 48.3
TAPS(0.5) 21.7 9.9 13.6 76.0 31.0 43.8
TAPS(µG) 14.2 31.0 19.3 74.5 41.2 53.0

MAESTRO
O&F 99.3 91.5 95.1 93.8 93.7 93.7
TAPS(0.5) 99.7 86.9 92.7 94.7 92.8 93.7
TAPS(µG) 99.6 90.1 94.5 93.8 93.7 93.7

TABLE I
THE RESULTS OF OUR PROPOSED METHOD (TAPS) COMPARED TO THE

ONSETS & FRAMES MODEL ACROSS THE TESTED DATASETS. “TAPS(0.5)”
INDICATES WHERE A THRESHOLD OF 0.5 WAS USED FOR TAPS INSTEAD

OF µG .

subset. The effect of S is investigated in Figure 1, where we compare
values from 0 to 10 on our test sets.

B. Results

Table I shows the performance of TAPS compared to the Onsets
& Frames model which it takes as input. It is clear that TAPS is
effective at improving transcription performance in the presence of
domain shift without using any additional training data. In every test
with domain shift, TAPS leads to an increase in performance across
all metrics: precision, recall, and F1 for both notes and frames.

The first thing to notice is that the use of a 0.5 threshold with
TAPS instead of the adaptive µG indeed leads to worse performance.
Precision increases but at the cost of a substantial loss in recall, and
consistently worse F1 (the only exception being SMD, where the
extremely low starting precision plays a large role). This is a clear
sign of a non-optimal threshold—in this case one that is too high—
whereas TAPS using µG tends to see a more consistent improvement
across precision, recall, and F1. This supports our hypothesis that µG

helps to overcome any bias of the model.
We also applied the learned µG directly to the Onsets & Frames

outputs (without the full TAPS procedure). We found that this actually
lead to a significant performance decrease compared to the original
0.5 threshold, suggesting that the aggregated pitch shifted outputs are
also integral the process, not just the learned threshold.

For the recording condition shift (MAPS and SMD), the original
model’s surprisingly low frame-based precision (and F1) on SMD
stands out initially. This appears to be due to a lack of pedal
information in the SMD Midi files: As mentioned, the model is
trained to extend note offsets while the sustain pedal is being being
held. In SMD, although the use of the sustain pedal can be heard in
many of the wav files, no pedal information is present in the Midi.
This leads to the model extending the note offsets much further than
the ground truth annotations, and therefore to low precision.

Disregarding SMD’s frame-based metrics, TAPS’s performance
increase under a recording condition shift appears to be roughly
inversely proportional to the initial model’s performance. This makes
sense, because there are fewer errors to be corrected given high
performance (as on SMD’s note-based metrics) compared to lower
performance (as on MAPS). Still, TAPS leads to an increase of
roughly one point in F1 on SMD and just over three points on MAPS.
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Fig. 1. TAPS’s improvement in note-based F1 over the Onsets & Frames
model on each dataset, varying the maximum pitch shift S.

We expected the instrument shift condition to be more difficult for
the Onsets & Frames model, and that does appear to be the case.
Its performance on GS and DCS are significantly lower, but TAPS
is still able to increase its performance. On GS, the original model’s
performance is still decent since the training data’s piano music (with
percussive note onsets) are more similar to guitar music than DCS’s
choral music, which lacks any percussive onsets. On GS, where the
original model’s performance is slightly below that of MAPS, but
not terrible, TAPS leads to an increase slightly less than that seen
on MAPS, suggesting that there might be some kind of performance
cutoff below which the inverse relationship seen on SMD and MAPS
no longer holds. Meanwhile, on DCS, where the original model’s
performance is quite bad, TAPS still somewhat surprisingly leads
to a modest increase performance (and a large one on the frame-
based metrics). We mentioned earlier that we expected decent model
performance to be a prerequisite for TAPS to work. However, it seems
that decent might be too high of a bar—it may be that only better-
than-random performance is required.

For the baseline without domain shift (MAESTRO), TAPS leads to
roughly equivalent performance as the original model, with a slight
decrease on some of the metrics. This is important, as it shows that
TAPS can be applied in any test situation with only minimal decrease
in performance in the worst case. For real-world applications, there
will almost always be some domain shift—even if it as small as a
different recording setup as in MAPS and SMD.

Finally, Figure 1 shows TAPS’s increase in note-based F1 over the
Onsets & Frames model with varying levels of S (the maximum
pitch shift hyperparameter). The plot shows that, while most of
the performance gain occurs already at quite small values of S,
there is a long tail for most of the domain-shift datasets: The
curves seem to indicate a roughly logarithmic growth to F1 as S
increases. This makes sense, because as S grows, each additional
pitch shift contributes proportionally less to the model’s average
output. Furthermore, as the pitch shift increases, the inputs become
noisier. The main exception to this trend is GS, which exhibits a near
linear improvement from S = 3 to S = 10. We were unable to find
any clear reason for this property of GS by examining the outputs. In
all other data sets, the value of S seems to have only a small effect
on performance once it is greater than 3.

Looking into TAPS’s outputs to see how it is able to improve model

performance makes things more clear. First, for non-pitch-shifted
inputs across our four domain-shifted datasets, an overwhelming
majority of the Onsets & Frames model’s outputs are within 0.2 (our
ϵ) of 0 or 1 (99.4%), and an overwhelming majority of those (98.9%)
are correct. TAPS will never change those outputs, which helps to
avoid a large decrease in performance. In the other cases, where the
model’s output is instead between 0.2 and 0.8 (of which only 57.9%
would be correct using a threshold of 0.5), the corresponding pitch-
shifted outputs are rarely unsure themselves. Rather, 77.6% of them
are within 0.2 of 0 or 1, and 74.7% of those are correct. Since these
extreme values contribute more to the average output than outputs
between 0.2 and 0.8, this leads to a more clear and accurate estimate
in the aggregate.

The above statistics rely upon the good performance of the Onsets
& Frames model. Any explanation for the model’s reasoning is a
question best left for the field of Explainable AI, but roughly stated:
It seems that by some quirk in the model, it is sometimes unsure
for particular outputs which are otherwise “obvious” (presumably
these are cases which were not quite covered in the training data due
to the domain shift). The pitch shifting tweaks the input enough, or
passes the input through slightly different nodes in the neural network
(shifted by S), that the outputs again become clear.

V. CONCLUSION

In this paper, we have presented Transcription Adaptation via Pitch
Shifting (TAPS)3, a method to improve automatic transcription qual-
ity in the presence of domain shift without requiring any additional
model training or labeled data. TAPS works by using a transcription
model to transcribe pitch-shifted versions of each input, aggregating
outputs across each version where the model is uncertain. Using a
transcription model originally trained on piano music, we presented
experiments on four datasets with domain shift: two with a recording
condition shift and two with an instrument shift (guitar and a cappella
music). We showed that TAPS consistently improved performance in
all datasets with domain shift across all metrics. We also showed
that its decrease in performance in the absence of domain shift is
minimal (even non-existent on some metrics). Given this and the
rarity of encountering no domain shift in real-world scenarios, TAPS
represents a promising addition to all transcription pipelines.

In future work, we intend to investigate TAPS further with a
wider variety of transcription models, including some which we
purposefully train non-optimally in order to investigate the effect of
model quality. We will also extend TAPS to methods which output
transcriptions at a more fine-grained level than the semitone, and test
different settings of the uncertainty hyperparameter ϵ. We also intend
to see if other data augmentations besides pitch shifting might bring
a similar effect. Finally, we would like to investigate other methods
of dealing with domain shift, for example different methods of data
normalization which can be applied at model train time to try to
reduce the performance drop of domain shift. Such methods’ effect
on TAPS should also be investigated.
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