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ABSTRACT1

Repetitions play a central role in music, be they repeated2

themes, harmonies or rhythmic repetitions. They can dif-3

fer in many ways: vertically, by shifting notes up or down4

in pitch, time-dilated, by slowing or accelerating them, or5

just slightly different, for example with ornamentation or6

removed notes. This work focuses on explicitly generat-7

ing continuations with patterns given a musical excerpt.8

We compare two different ways of finding such repetitions,9

and the found patterns are used to help generate music that10

is more musically well-formed than a pattern-agnostic ap-11

proach. Quantitative results show an improvement in per-12

formance for both of our algorithms over a pattern-agnostic13

baseline, with the more sophisticated algorithm exhibiting14

the most promising results. Qualitatively, it still lacks some15

creativity, as the model only creates patterns or notes that16

already exist in the given excerpt, which is particularly an17

issue for pieces that do not exhibit a large amount of repe-18

tition.19

1. INTRODUCTION20

This paper focuses on monophonic music generation, and21

in particular on generating music with repetition. Repe-22

tition is a fundamental component of musical form [1, 2],23

from classical music to modern-day pop. Cognitively, it is24

a major component of a listener’s experience with a piece25

of music, where the prediction and recognition of repeated26

themes and motives—even (and in some cases in particu-27

lar) for non-exact repetitions—can lead directly to the en-28

joyment of the listening experience [3, 4]. Therefore, the29

inclusion of repetition must form an essential component30

in any music generation system.31

The evaluation of generated music is an extremely sub-32

jective and difficult task [5]. Therefore, we concentrate33

on the first subtask of the MIREX Patterns for Prediction34

(PP) task 1 , whose goal is to develop algorithms that take35

a short excerpt (a prime) of a piece of music and produce a36

continuation: some notes that will follow the prime. This37

1 https://www.music-ir.org/mirex/wiki/2019:
Patterns_for_Prediction
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allows us to explore music generation with repetition, and38

has a well-defined quantitative evaluation metric (though39

we also perform a qualitative evaluation of our results).40

The main challenge for our approach is to develop a ro-41

bust way to find patterns with variation in music. By “ro-42

bust”, we mean an algorithm that can find repeated se-43

quences that would be considered very similar by human44

listeners: it could be a repeated theme played at a different45

pitch or tempo, one with pitch or rhythmic variations, or46

one with added or removed notes. This task is not trivial,47

even for humans, as the perception of such patterns can be48

very subjective: even annotators do not have perfect agree-49

ment with each other [6].50

For a computer, finding such repeated patterns efficiently51

is even more difficult. It is important to note that hierar-52

chical models of musical form have indeed shown the abil-53

ity to capture some longer-term, overarching properties of54

repetition in music, for example in the task of splitting a55

piece into sections [7]. However, this is quite a different56

task than detecting the specific local repetitions in which57

we are interested, and can rely on more global structures58

such as the harmonic texture of a piece.59

A naive approach to finding local repetitions is to com-60

pare all subsets of the short excerpt with the whole set, and61

count how many times each one of them appears in the62

prime. This solution works for exact matches, but is slow,63

and doesn’t work when the patterns are not exact. It is of-64

ten the case that themes, or important parts or even sections65

of the music, are repeated, but those themes commonly un-66

dergo variation, transformation or thematic-motivic work67

throughout a piece. Thus, while the ability to find exact68

repeats in music is a necessary component for our system,69

it is not a sufficient way to ensure that all repeated pat-70

terns are found, so we use a more sophisticated approach.71

In other words, while finding perfect matches is feasible,72

such patterns are not sufficient for generating music.73

Once these repeated patterns are found in our given74

prime, a continuation must be generated. In recent years,75

many deep learning approaches have been applied to the76

task of music generation (e.g., [8–11]). However, such77

models have a couple of drawbacks for our purposes. For78

one, we want our model to be adaptable in order to gen-79

erate music that is strongly informed locally by the given80

prime. One potential solution for this would be to com-81

bine a long-term model (which is trained on a large cor-82

pus of music to learn general rules of tonality and form)83

with a short-term model (which learns the local structure84
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Pitch class C D E F G
C 0.25 0.5 0.25 0 0
D 0 0 1.0 0 0
E 0.5 0 0 0.5 0
F 0 0 0 0 1.0
G 0 0 1.0 0 0

Table 1: Transition matrix of Figure 1.

specific to a single musical piece). This approach been1

used by statistical models of music (e.g., [12, 13]); how-2

ever, it is more difficult to apply this to large networks3

given the large amounts of training data they are trained on4

initially and their large parameter count in comparison to5

such a short prime. Furthermore, given the relatively short6

length of the continuations required by our chosen task,7

it is unclear whether such a long-term model would even8

help. Secondly, with such large black-box-type models,9

it is difficult to ensure an explicit generation of repeated10

patterns, as is feasible with simpler alternatives (although11

some work has been done in this direction, with the goal12

of enforcing local structural constraints on symbolic music13

generation based on a template piece [14]).14

Therefore, in this work we instead concentrate on sta-15

tistical approaches to music generation. Specifically, we16

take existing algorithms for detecting patterns with varia-17

tions [15, 16], and investigate the results of applying them18

(with only minor changes) to the task of music generation19

using a single-order Markov model. Our approaches per-20

form well against the task’s simple baseline, described in21

section 2, but can still lack creativity in some cases, partic-22

ularly when the prime is not very repetitive.23

2. RELATED WORK24

In [17], the authors discuss how a computer can generate25

music using statistics. The basic idea uses Markov chains,26

i.e., a succession of states, where each state only depends27

on the previous one. A simple music generation algorithm28

can be extended from that idea. For example, in [18], a29

Markov model is trained on a large corpus of pieces and30

then used to generate a continuation of an input excerpt31

(similar to our task). However, this model draws from pre-32

learned patterns from its training corpus, rather than pat-33

terns taken from the prime directly, as we wish to do.34

Consider the simple melody in Figure 1 (the first 4 bars35

of “Frère Jacques”) as an example. Take each pitch class36

as a state.37

To calculate the transition probabilities for each state, a38

possible algorithm could be formulated in the following39

way: create a transition matrix, and for each pitch, count40

how many times a note of that pitch is followed by notes41

of other (or the same) pitches, and divide by the number of42

times that pitch appears (disregarding the last note which,43

by definition, doesn’t have a next state). This generates44

the transition matrix shown in Table 1, which should be45

read line then column. For example, “D is followed by E46

with probability 1.0”. If the excerpt in Figure 1 is taken47

as a prime, this table could then be used to generate the48

continuation by taking the last state (here, “G”), and suc-49

cessively drawing the next note from the distribution in the50

corresponding row in the table. (A possible output for a51

4-note continuation would be “E C E F”.) This simple gen-52

eration algorithm can thus only generate states that appear53

in the prime sequence (i.e., the input), and can only gen-54

erate transitions that already exist (e.g., we can never have55

a C followed by a G, and we can never have a B at all).56

There is therefore only a very limited notion of creativity57

or musical structure in this case, only a generation of rep-58

etitions of what already exists. To a human listener, most59

of the outputs from this algorithm sound relatively simple.60

However, it is fast, and can run in 𝒪(𝑛+𝑘), where 𝑛 is the61

length of the sequence, and 𝑘 is the number of generated62

states.63

In the previous example, the Markov model was used to64

generate only pitches, but it can also be extended for dura-65

tions, or pairs of pitches and durations by simply defining66

the state space differently. In this work, we compare our67

system against a baseline Markov model trained to gener-68

ate sequences of (pitch, inter-onset-interval) pairs (i.e., the69

state space of the model consists of such tuples) [17]. This70

model is also used as a baseline for the Mirex PP task 2 .71

2.1 Pattern Detection72

In order to improve the basic model of [17], the authors73

propose a solution based on pattern discovery and pattern74

inheritance, where a pattern is defined as a set of notes75

which is repeated, shifted, or time-dilated in the piece. For76

example, in Figure 1, one pattern would be “C D E C”,77

since it is repeated twice.78

The most basic method for pattern discovery is a naive79

string-based approach which finds only exact repetitions.80

Many more sophisticated methods exist, none of which is81

clearly the best in all cases, and they are often designed82

for very different goals. For example, recent overview of83

the highly related task of symbolic melodic similarity (in84

which systems measure the similarity between two musi-85

cal excerpts), can be found in [19]. In [20], pattern detec-86

tion was used to perform melodic segmentation by search-87

ing for patterns in pattern occurrences. Since they are de-88

signed with specific downstream tasks in mind, the above89

approaches tend to be more complex and less transparent90

than basic pattern detection algorithms. We therefore draw91

instead from the basic pattern detection literature, leaving92

more sophisticated approaches for finding different types93

of patterns for future work. More thorough discussions on94

some of these methods (in various contexts) can be found95

in, e.g., [6, 21–23].96

We choose to use a pattern-detection algorithm based on97

SIA [15] 3 , since it was simple to implement, adapt, and98

investigate for our purposes. We describe SIA and its in-99

tegration into our generation process in the following sec-100

tion.101

2 https://glitch.com/@tomthecollins/
wi-mir-2020-workshop

3 Although SIA is well-adapted for polyphonic textures, we use it here
on monophonic input since it works well, is not slow (given the lengths of
our primes), and will allow us to more easily adapt to polyphonic music
in future work.

https://glitch.com/@tomthecollins/wi-mir-2020-workshop
https://glitch.com/@tomthecollins/wi-mir-2020-workshop


Figure 1. The first 4 bars of “Frère Jacques”.

3. DESIGN AND IMPLEMENTATION1

3.1 Input format2

Our pattern-informed music generation algorithms take as3

input monophonic sequences of midi notes, which are tu-4

ples of pitch (represented as MIDI note number), onset, du-5

ration and velocity attributes. Before the detection of pat-6

terns and generation, each prime is transformed so that it7

does not include rests, making both more straightforward.8

The pitches and onsets remain unchanged, only the dura-9

tions are updated, so that each note ends when the next10

note begins. When generating the next state, the starting11

time of each note is set to the offset time of the previous12

note.13

3.2 Pattern detection14

In order to find such patterns, we decided to follow two15

approaches.16

1. A string-based approach, which finds exact patterns.17

2. A translation-based approach, which finds exact18

patterns, as well as vertically shifted patterns.19

Consider the sequence “1 2 3 4 2 3 4 5” consisting of20

eight states. The string-based solution would only find the21

pattern “2 3 4”, whereas the translation-based algorithm22

would find the pattern “1 2 3 4”, knowing that it is shifted23

up by one to obtain “2 3 4 5”.24

3.2.1 String-based pattern recognition25

In this case, the notes of the prime are transformed into a26

list of (pitch, duration) tuples, and the state-space of the27

Markov model consists of such tuples. The algorithm then28

uses a string-based pattern matching approach, and finds29

only exact patterns, defined as a sequence of these (pitch,30

duration) tuples which appears at least twice in the prime.31

A pattern detected by this algorithm for Figure 1 would be32

the first four notes.33

3.2.2 Translation-based pattern recognition34

As opposed to the string-based approach, this algorithm35

first transforms the notes of the prime into a list of (pitch,36

onset) tuples. Then, it uses translation vectors to find37

the maximum translatable pattern: that is, a sequence of38

notes that can be shifted either vertically (in pitch) or hor-39

izontally (in onset time) in the score to find a matching40

sequence. As opposed to the string-based approach, this41

method uses onset instead of duration, which is needed to42

calculate the translation vectors, described below. This al-43

gorithm is based on SIA [15], with the difference that we44

consider only contiguous patterns, which helps for the gen-45

eration process. We instead leave non-contiguous pattern-46

based generation for future work.47

To make things simple, we will detail this process step by48

step, again using the simple example of “Frère Jacques”49

(Figure 1). For each note, we first calculate its translation50

vector with respect to all following notes in the sequence.51

Specifically, let 𝑛𝑖 and 𝑛𝑗 be 𝑖th and 𝑗th notes of the prime,52

where 𝑖 < 𝑗. Then the translation vector of 𝑛𝑖 to 𝑛𝑗 is53

calculated as in Equation 1, where the pitch is represented54

by its MIDI note number:55 (︂
𝑛𝑗 .𝑜𝑛𝑠𝑒𝑡− 𝑛𝑖.𝑜𝑛𝑠𝑒𝑡
𝑛𝑗 .𝑝𝑖𝑡𝑐ℎ− 𝑛𝑖.𝑝𝑖𝑡𝑐ℎ

)︂
(1)

Considering the first two bars of “Frère Jacques,” This56

results in the table shown in Table 2. (Durations are mea-57

sured in whole notes here, but any other representation58

would be equivalent, as long as it is consistent through-59

out a prime.) Here, the table should be read starting with60

columns and then rows (e.g., the first note (0.0, 72) can61

be transformed into the second note (0.25, 74) by adding62

the translation vector (0.25, 2). Then for each translation63

vector that appears at least twice in the table (signified by64

colors), we create a sequence of those notes which have65

this vector in their column. Sorting the translation vectors66

by the length of the resulting sequence of notes results in:67

•
(︂
0.25
2

)︂
:
(︂
0.0
72

)︂
,
(︂
0.25
74

)︂
,
(︂
1.0
72

)︂
and

(︂
1.25
74

)︂
.68

•
(︂
1.0
0

)︂
:
(︂
0.0
72

)︂
,
(︂
0.25
74

)︂
,
(︂
0.5
76

)︂
and

(︂
0.75
72

)︂
.69

•
(︂
0.5
4

)︂
:
(︂
0.0
72

)︂
and

(︂
1.0
72

)︂
.70

• . . .71

•
(︂
1.25
2

)︂
:
(︂
0.0
72

)︂
and

(︂
0.25
74

)︂
.72

Each of these sequences is a potential repeated pattern.73

They are filtered to keep only those sequences which con-74

tain only contiguous notes, like the second one in the enu-75

meration above (shown in purple in the table), and unlike76

the first one (in red). This filtering eliminates any “split”77

patterns whose beginning and end each repeats, but whose78

middle changes. We also remove any patterns whose rep-79

etition contains any notes from its original occurrence.80

Starting from the top of this sorted list, a pattern is valid81

when no notes of that pattern have appeared in a previous82

valid pattern.83



(Onset, pitch) (0.0, 72) (0.25, 74) (0.5, 76) (0.75,72) (1.0, 72) (1.25, 74) (1.5, 76) (1.75, 72)
(0.0, 72) - - - - - - - -
(0.25, 74) (0.25, 2) - - - - - - -
(0.5, 76) (0.5, 4) (0.25, 2) - - - - - -
(0.75, 72) (0.75, 0) (0.5, -2) (0.25, -4) - - - - -
(1.0, 72) (1.0, 0) (0.75, -2) (0.5, -4) (0.25, 0) - - - -
(1.25, 74) (1.25, 2) (1.0, 0) (0.75, -2) (0.5, 2) (0.25, 2) - - -
(1.5, 76) (1.5, 4) (1.25, 2) (1.0, 0) (0.75, 4) (0.5, 4) (0.25, 2) - -
(1.75, 72) (1.75, 0) (1.5, -2) (1.25, -4) (1.0, 0) (0.75, 0) (0.5, -2) (0.25, -4) -

Table 2: Translation vectors of the first two bars of Figure 1. Colors signify identical translation vectors (potential patterns),
and uncoloured, non-empty cells are unique. The pitches are indicated by their MIDI note number.

So, in this example, the first four notes (corresponding to1

the columns of the purple translation vectors in the table)2

can be shifted by four beats to obtain the last four notes3

(corresponding to the rows of the purple vectors in the ta-4

ble), and are saved as a valid pattern.5

3.3 Special cases6

For both the string-based and translation-based algorithms,7

when a note is not part of any larger pattern, it is consid-8

ered as a pattern itself, making it easier for the generation.9

In the case where the last pattern of the prime is unique,10

the probabilities for the next pattern are set to the unigram11

probability of each pattern appearing in the prime, regard-12

less of position.13

3.4 Generation14

Once the patterns are found, both algorithms work in the15

same way: they transform the sequence of notes into a se-16

quence of patterns, and apply a first-order Markov model17

on this transformed sequence to generate, not a continua-18

tion of notes, but rather a continuation of patterns. Then,19

we translate this sequence of patterns back into a sequence20

of midi notes: a list of tuples with pitch, onset, duration21

and velocity (which we always set to 100).22

3.5 Smoothing23

These algorithms as presented can only produce transitions24

that already exist in the given prime. In order to inject25

additional creativity into the generation, we apply a form26

of additive smoothing as follows. First, we produce the27

transition matrix over the patterns found in the prime (as28

shown in Table 1 for pitches). Then, each probability is29

multiplied by some number 𝛼 < 1, thus removing some30

probability mass from the transitions found in the prime.31

We then distribute the remaining 1 − 𝛼 probability mass32

among the states, proportional to the normalised histogram33

(the unigram probability of each state; shown in Table 3 for34

“Frère Jacques”). In our experiments, we set 𝛼 to 0.9.35

This approach ensures that states that often appear in the36

prime also appear more often than others in the genera-37

tion, but would still create transitions that don’t exist in the38

prime, resulting in some “creativity”. With this smooth-39

ing, the transition matrix shown in Table 1 is changed as in40

Table 4.41

C D E F G
0.2857 0.1429 0.2857 0.1429 0.1429

Table 3: The normalised histogram (unigram probabilities)
of the pitches of Figure 1.

Pitch class C D E F G
C 0.25357 0.46429 0.25357 0.01429 0.01429
D 0.02857 0.01429 0.92857 0.01429 0.01429
E 0.47857 0.01429 0.02857 0.46429 0.01429
F 0.02857 0.01429 0.02857 0.01429 0.91429
G 0.02857 0.01429 0.92857 0.01429 0.01429

Table 4: Transition matrix of Figure 1 with additive
smoothing (𝛼 = 0.9).

4. EVALUATION42

4.1 Baseline Methods43

We compare against two different baseline methods, nei-44

ther of which uses any sort of pattern detection or explicit45

repetition generation. The first, Baseline, is based on the46

model described in [17], and is also used as a baseline in47

the MIREX PP task. It is a first-order Markov model which48

is trained on and outputs (inter-onset-interval, pitch) tu-49

ples. The second, Simple, outputs the combination of two50

first-order Markov models: one which outputs the pitch of51

each note and a second which outputs the inter-onset inter-52

val (IOI) for each.53

4.2 Metrics54

For a quantitative evaluation, we apply the two metrics also55

used in the MIREX PP task: cardinality score and pitch56

score. 457

4.2.1 Cardinality score58

The cardinality score (CS) is defined as:59

CS(P,Q) = max
𝑡∈T

|{𝑞 ∀ 𝑞 ∈ Q | (𝑞 + 𝑡) ∈ P}| (2)

Here, P and Q sets of (onset, pitch) tuples for the true and60

generated continuations, respectively, and T is the set of61

all possible translation vectors that make a note from Q62

4 The code used for evaluation is available at https://github.
com/BeritJanssen/PatternsForPrediction.

https://github.com/BeritJanssen/PatternsForPrediction
https://github.com/BeritJanssen/PatternsForPrediction


overlap a note from P, formally defined as:1

T = {𝑝− 𝑞 ∀ 𝑝 ∈ P, 𝑞 ∈ Q} (3)

In other words, a higher score reflects how similar two con-2

tinuation are in their general shape, ignoring shifts in time3

and pitch. Using this score, recall and precision can be4

calculated as in Equations 4 and 5 (note that we subtract5

1 from each numerator and denominator since at least one6

note is guaranteed to overlap), and F1 is calculated as their7

harmonic mean as usual. Intuitively, recall is the propor-8

tion of the continuation which has been correctly gener-9

ated, and precision is the proportion of the generation that10

matches the continuation.11

𝑅𝑒𝑐𝑎𝑙𝑙 =
CS(P,Q)− 1

|P| − 1
(4)

12

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
CS(P,Q)− 1

|Q| − 1
(5)

The cardinality scores are also plotted as a function of13

beats after the prime’s final onset position, where each CS14

value considers only notes from the true continuation up15

to that position. So, if a generation contains a contour that16

matches the beginning of the true continuation, but not the17

end (as might be expected), that generation’s CS will be18

higher for smaller onset values (after some possible initial19

values of 0 corresponding to positions before the 2nd gen-20

erated note). The CS at onset 10 corresponds to the overall21

cardinality score with respect to 10 beats after the final note22

from the prime, and thus represents the best indicator of a23

generation’s over quality in this regard.24

4.2.2 Pitch score25

One issue with the cardinality score is that it is pitch in-26

variant: if the generated continuation is equal to the true27

continuation but shifted vertically, it would get a perfect28

score of 1, since the whole sequence of notes can be trans-29

lated into the true continuation with only one translation30

vector. Pitch score is used to solve this problem. It is the31

magnitude of the overlap between normalised histograms32

of the true and generated continuations (an example of a33

normalised histogram is given in Table 3). This process is34

repeated disregarding octaves (i.e., taking each pitch mod-35

ulo 12).36

4.3 Data37

The dataset used for evaluation is composed of two parts:38

the prime, from which a continuation will be generated,39

and the true continuation, which will be compared with40

the outputs of the different generation systems. Specifi-41

cally, we use the large monophonic dataset prepared for42

the MIREX PP task, which consists of excerpts taken from43

the Lakh MIDI dataset [24].44

4.4 Quantitative Results45

Each system’s CS with respect to onset position are plotted46

in Figure 2. We can first observe that the simple first-order47

Model mean median std
Baseline [17] 0.542 0.555 0.211
Simple 0.544 0.556 0.206
String-based 0.553 0.565 0.220
Translation-based 0.574 0.588 0.218

Table 5: Pitch scores.

Model mean median std
Baseline [17] 0.616 0.635 0.188
Simple 0.618 0.633 0.185
String-based 0.627 0.650 0.196
Translation-based 0.647 0.670 0.192

Table 6: Modulo 12 pitch scores.

Markov model performs poorly, which is somewhat ex-48

pected. The next best model appears to be the baseline, and49

both of our systems with pattern recognition achieve an im-50

provement in precision, recall, and F1, with the translation-51

based system performing the best. Our systems see the52

greatest improvement in terms of recall, which suggests53

that they output more notes of the correct general shape.54

Our systems also avoid the sharp decrease in performance55

of the baseline system over the first few beats, instead see-56

ing a slow decrease across the duration of the continuation.57

This makes sense conceptually, because instead of gener-58

ating one note at a time, our systems generate one pattern59

at a time. Thus, they are typically fewer steps along in60

the generation process after any given duration (each step61

holds a potential for the generation to go off track).62

Table 5 shows each system’s pitch scores (both with and63

without octave equivalence) in violin plots, and the exact64

values are given in Tables 5 and 6. We can observe that65

the systems are quite similar. However, the translation-66

based system again achieves the best results, though only67

marginally in this case. The scores for all systems are68

only slightly above 0.5, which shows that the majority of69

generated notes are of the correct pitch, but there are still70

many incorrect notes from this perspective. Of these er-71

rors, fewer than 10% are simple octave errors (this can be72

measured by the difference between the values in Tables 573

and 6).74

4.5 Examples75

For a more in-depth comparison of the performance of our76

approaches to pattern-based generation, we now present77

an in-depth analysis of the translation-based, string-based,78

and simple (no pattern) outputs for two example primes. In79

all figures in this section, the string-based and translation-80

based patterns are annotated with red and green brackets,81

respectively.82

The first example is a prime from our test dataset, shown83

in Figure 4. From the red and green annotations, it is clear84

that the translation-based pattern detection algorithm has85

found longer patterns on average than the string-based one.86

In particular, there are many more single-note “patterns”87

for the string-based algorithm. The true continuation, as88

well as the continuation generated by each system, are89



Figure 2. Cardinality scores for our proposed systems (Transition-based and String-based) as well as the simple Markov
model and the baseline. The x-axis represents onset position in the true continuation, measured in quarter notes.

Figure 3. Pitch scores for our three models and the base-
line.

shown in Figure 6 (note that the continuations are sampled1

from distributions, so will change each time). We can ob-2

serve that the generation without pattern recognition is the3

least similar to the true continuation. The string-based gen-4

eration is better: it has the correct rhythm, and even nearly5

the correct pitch contour for the first half (though notes are6

shifted up by both minor and major thirds). However, the7

translation-based generation matches the true continuation8

exactly.9

Clearly, the translation-based approach performs quite10

well when repetition is present in the prime. However, that11

is also its drawback: its generations heavily depend on the12

structure of the prime: if the prime is not repetitive, it will13

not be able to rely on such pattern generations to produce,14

and the generation could be poor.15

The example prime shown in Figure 5 (the “Castle in the16

sky” theme, composed by Joe Hisaishi) is one such case.17

Notice how many small patterns are found by both meth-18

ods, and how short each one is. The generations (shown19

in Figure 7) reflect this: only very short patterns can be20

generated, and none of the generations match the true con-21

tinuation very well. The string-based generation is slightly22

better in terms of rhythm, at least matching the dotted-half23

note, quarter note rhythm in bars two and four, as well24

as the position of the dotted-quarter notes in bars one and25

three. In terms of pitch, none of the generations perform26

very well, although they produce a reasonable set of notes.27

So, it can be seen that the translation-based method pro-28

duces the most accurate generations for repetitive primes,29

but falls back to around the performance of the less sophis-30

ticated systems for primes without much repetition.31

5. CONCLUSION32

In this work, we presented two novel systems for generat-33

ing music with explicit repetition, based on a given prime.34

The systems generally work by first detecting repeated pat-35

terns in the prime, and using these to inform the genera-36

tion process with a simple Markov model. We show that37

a more flexible, translation-based pattern detection algo-38

rithm is able to capture more sophisticated forms of repeti-39

tion, which improves its generations. Overall, this pattern-40

based approach works well when the prime is somewhat41

repetitive; however, it can struggle otherwise.42

This reliance on patterns is another potential drawback43

of our system in that it has no mechanism to make small44

changes to the found patterns. The creativity involved in45

making small changes to repeated patterns throughout a46

piece of music is very important to such repetition, and our47

system currently lacks this ability. Future work could try to48

improve this in two ways. First, during pattern detection,49

the algorithm could be adapted to find such patterns with50

variations, explicitly noting the types of variations seen51

in the prime. Then, during generation, the model could52

explicitly add some of these or other variations into the53

generated patterns. This would allow the system to pro-54

duce more creative generations, while still ensuring that55

it has some repetitive structure. The evaluation of music56

generation is a very difficult problem, and in future work,57

we could also include a subjective evaluation involving a58

group of experts, especially when using primes that do not59

show repeated patterns (since these generations can be the60

most varied).61

In this work, we concentrated on monophonic music, but62

similar algorithms for polyphonic music can also be devel-63

oped in a few ways. The simplest is to apply a voice sepa-64

ration model (e.g., [25]) as a preprocessing step, then pro-65

ducing one generation per voice. Another option is to en-66

large the state-space of the Markov model ton include com-67

binations of notes, although this adds a significant amount68

of complication to the process.69



Figure 4. MIDI sample taken from the MIREX 2019: Patterns for prediction dataset. Red and green brackets show the
patterns found by the string-based and translation-based algorithms, respectively.

Figure 5. “Castle in the sky” theme, composed by Joe Hisaishi. In red, the patterns found by the string-based approach, in
green, the ones found by the translation-based algorithm.

(a) True continuation.

(b) No pattern recognition.

(c) String-based pattern recognition (patterns in red brackets).

(d) Translation-based pattern recognition (patterns in green brackets).

Figure 6. Generated and true continuations of the prime
shown in Figure 4. Exact onset timing has been quantized
to the nearest 16th note.

(a) True continuation.

(b) No pattern recognition.

(c) String-based pattern recognition (patterns in red brackets).

(d) Translation-based pattern recognition (patterns in green brackets).

Figure 7. Generated and true continuations of the prime
shown in Figure 5. Exact onset timing has been quantized
to the nearest 16th note.
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