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ABSTRACT1

This study focuses on the exploration of the possibilities2

arising from the application of an NLP word-embedding3

method (Word2Vec) to a large corpus of musical chord4

sequences, spanning multiple musical periods. First, we5

analyse the clustering of the embedded vectors produced6

by Word2Vec in order to probe its ability to learn com-7

mon musical patterns. We then implement an LSTM-based8

neural network which takes these vectors as input with the9

goal of predicting a chord given its surrounding context in10

a chord sequence. We use the variability in prediction ac-11

curacy to quantify the stylistic differences among various12

composers in order to detect idiomatic uses of some chords13

by some composers. The historical breadth of the corpus14

used allows us to draw some conclusions about broader15

patterns of changing chord usage across musical periods16

from Renaissance to Modernity.17

1. INTRODUCTION18

Algorithmic approaches to music usually come in two fla-19

vors: music information retrieval (MIR) aims at extracting20

relevant patterns from musical signals (e.g. audio record-21

ings, MIDI files, or images of scores) and improve the per-22

formance on certain specific tasks, such as genre or com-23

poser classification, automatic playlist generation, optical24

music recognition and more. Computational music analy-25

sis, on the other hand, aims at using data-driven methods26

to study the domain of music in order to develop a deeper27

understanding of its cultural and historical diversity, or im-28

plications for its perception and cognition.29

This study bridges the two approaches by applying the30

machine-learning (ML) methods often employed for the31

task of chord prediction in MIR to a large corpus of sym-32

bolic chord sequences. However, our goal is not to glob-33

ally optimize chord prediction in this dataset. Rather,34

we use the chord-prediction task as a benchmark measure35
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for investigating stylistic characteristics of different com-36

posers in the dataset. We suppose that the historical di-37

mension in particular affects stylistic differences which,38

in turn, should be reflected in the performance of a (glob-39

ally constant) chord predictor. In other words, assuming a40

fixed model for chord prediction, how does its performance41

change given historically varying input? What conclusions42

can we draw from this perspective?43

In the remainder of the paper, we first summarize recent44

related work (Section 2). We then describe the dataset45

used in our study (Section 3), as well as our specific ap-46

plication of the three ML approaches in more detail (Sec-47

tion 4). We report two important results (Section 5): that48

clustering in an embedding space reveals functional rela-49

tions between chords, and that changes in performance of50

our chord-prediction model (dependent on composer and51

historical time) indicate fundamental changes in the usage52

of harmony.53

2. RELATED WORK54

Our study draws on a dataset of symbolic musical chord55

sequences and uses three fundamental machine learning56

building blocks: word embeddings, clustering, and Recur-57

rent Neural Networks (RNNs).58

Word embedding is a popular technique in Natural Lan-59

guage Processing (NLP) which learns a mapping of words60

to vectors in a low-dimensional embedding space from a61

corpus of texts, which is supposed to contain sufficient62

information on the semantic relationships between words.63

The mapping is such that the relative positions of the vec-64

tors (hopefully) reflect these semantic relationships. The65

precise learning of this mapping is dependent on the spe-66

cific method used. We use Word2Vec [1]. In Word2Vec,67

words often appearing in similar contexts are mapped to68

close points in the embedding space, according to their co-69

sine distance.70

Previous work has used Word2Vec successfully for mod-71

eling aspects of the musical language. In [2], the authors72

show that a simple approach of splitting musical scores73

into short slices containing note presence information is74

able to capture some simple features such as tonal proxim-75

ity. Later, in [3], a similar slicing procedure is used on a76
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larger corpus that re-affirms Word2Vec’s ability to model1

musical concepts such as tonal relationships between mu-2

sical keys. In [4], the authors learn an embedding space3

in a similar way, but use as input multi-hot vectors of note4

presence, rather than one-hot encodings of unique symbols5

(as in the standard Word2Vec). In contrast to these efforts,6

our work takes annotated chord symbols as input, thus en-7

abling us to model information at a much higher level of8

abstraction by eliminating information spurious to the har-9

monic structure such as short passing tones and ornamen-10

tation.11

Clustering is a well-known unsupervised learning prim-12

itive, which works by grouping together close points in a13

space, and is used to extract information about the points14

that might be contained in their coordinates. We use hi-15

erarchical clustering [5] with cosine distance to analyze16

the structural properties of our resulting chord embedding17

space. This hierarchical approach (as opposed to a more18

naive clustering approach like K-means [6]) has the benefit19

of allowing us to investigate clusters at different levels of20

granularity without needing to fine-tune any hyperparame-21

ters. Previous work has also investigated the clustering of22

musical embeddings, using explicitly trained chordal em-23

beddings (e.g., [2,3]), chord clusters induced through train-24

ing for a different task (e.g., [7, 8]), or clustering of larger25

groups of chords (e.g., [9]).26

RNNs are widespread tools in NLP, particularly in the27

field of word prediction with their Long Short-Term Mem-28

ory (LSTM) [10] variant. LSTMs are particularly suited29

to this task because of their structure, involving a for-30

get gate, which solves the short-term memory problem,31

typical of traditional RNNs. Similar work shows how32

they can be successfully employed in musical contexts,33

for “next-slice” modeling [4, 11], as well as for chord pre-34

diction [7, 12], and cadence identification [13]. While the35

cited works try to maximize prediction accuracy as much36

as possible, our goal is slightly different. Of course, we37

do want the models to perform as well as possible, but38

our main focus in the current work is instead to investigate39

the change in prediction performance across historical time40

(enabled by our expansive corpus), and to try draw musi-41

cological conclusions from this.42

3. DATA43

The dataset at our disposal, used for embedding, clus-44

tering, and chord prediction, consists of 4045 chord pro-45

gressions in pieces by 24 Western classical composers,46

spanning the wide historical range from the Renaissance47

to 20th-century Modernism. The data has been derived48

from harmonic annotations using the syntax presented49

in [14–17]. For this study, the labels have been simpli-50

fied in order to decrease the size of the chord vocabulary51

and to remove sparsity in our data. The pieces have been52

partitioned into local key segments that are either in the53

major or the minor mode (i.e., they contain no modula-54

tions), and chords are expressed relative to the tonic of that55

mode. Specifically, chords are represented by their root56

(expressed as a Roman numeral referring to the scale de-57

gree of the mode) and their quality (major, minor, dimin-58

ished, or augmented; 7th chords are reduced to their corre-59

sponding triad). Because of this representation, the chord60

vocabulary is potentially infinite because the seven scale61

degrees of the two modes can be preceded by arbitrarily62

many accidentals. In particular, this allows us to distin-63

guish enharmonically equivalent triads, such as #II:MAJ64

and bIII:MAJ that may entail different harmonic func-65

tions. Applied chords have been reduced to be directly re-66

lated to the tonic of the mode, e.g. “vii°/V” is translated67

to “♯iv°” and represented as #IV:DIM. Thus, the chord68

sequences in our dataset are of the form69

• MAJOR;I:MAJ,II:MIN,V:MAJ,..., or70

• MINOR;I:MIN,II:DIM,III:MAJ,...,71

where mode and chord labels are separated by a semicolon72

and chords within a progression are separated by commas.73

The average length of a chord sequence is 31 chords for74

major sequences and 28 chords for minor sequences. Since75

the roots of chords are expressed in relative notation, i.e. as76

the distance to the tonic, an F major chord is represented77

as IV:MAJ if the chord sequence is in C major, but as78

III:MAJ if it is in D minor. Following these reductions,79

there are 81 distinct chords in major sequences, and 7780

different chords in minor sequences in our data.81

As one can observe in Figure 1, the amount of data at our82

disposal varies greatly across composers and historical pe-83

riods. Note, for example, that no chord sequences in the84

major mode are available for Sweelinck. Great care has85

thus to be taken when generalizing our results to the entire86

œuvre of these composers or the historical periods they87

represent. The data is available at https://github.88

com/DCMLab/chordembeddings-smc2021.89

4. METHODOLOGY90

4.1 Chord embedding91

Our first processing step, serving as a basis for the two92

downstream tasks of clustering and chord prediction, is93

the application of Word2Vec [1]—specifically its imple-94

mentation in the Gensim library [18]—which takes as in-95

put “sentences” (in our case, major or minor sequences)96

of “words” (in our case, chord labels). We treat major97

and minor chord sequences as independent and never in-98

clude chord sequences from both modes in conjunction.99

Thus, in the following, when we say “train/test on all sen-100

tences/sections of a composer” or “train/test on a com-101

poser”, we implicitly mean that those sections are all in102

the same mode.103

Word2Vec has four hyperparameters to tune: size,104

window, sg (skip-gram), and min count. size de-105

termines the dimension of the embedding space. To avoid106

overfitting, it should be less than the size of the vocabu-107

lary, i.e. the number of distinct chords in the corpus. In108

our case, the vocabulary size varies considerably, between109

20 and 100 chord types per composer within either of the110

two modes. window defines the “width” of the context,111

i.e. how many chords, to the left and to the right, constitute112

the context of the current chord. The binary parameter sg113
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Figure 1. Total number of non-unique chord labels used by
each composer, split between major and minor sequences.
Composers are ordered by year of death (from oldest at the
top to more recent at the bottom).

is short for “skip-gram” and selects the training algorithm:1

it can be either “continuous bag of words” (CBOW, i.e.2

guessing the target word from its context), or “skip-gram”3

(guessing the context given the target word). min count4

sets a minimum absolute frequency a chord must have in5

order to be kept in the corpus. Since our corpus contains6

a Zipf-like distribution, this allows us to remove from the7

result the numerous irrelevant mappings of rare chords.8

For all of our experiments, we exclude rare chords, as9

the model is unable to learn a stable embedding for such10

chords, making any relevant conclusion impossible. We11

therefore set min count = 50 (since the most common12

chords have absolute frequencies of hundreds, if not thou-13

sands), which led to a vocabulary size of 32. The size of14

the embedding space was then chosen to be 5 (alternatives15

were essentially equivalent). We set window = 2 (again,16

other values led to similar results), and finally, we chose17

to use skip-gram rather than CBOW embeddings, because18

this led to more interpretable results.19

4.2 Clustering20

A first application of the mapping learned by Word2Vec is21

clustering, which is used to detect musical patterns. As is22

understandable from the properties of the mapping, chords23

appearing in the same cluster are likely to often appear in24

similar contexts. For this task, it is very difficult to carry25

out an objective, quantitative model evaluation. Therefore,26

we choose hyperparameters based on how much the out-27

come corresponds to music-theoretical intuitions. For ex-28

ample, we expect, when only training on major sections,29

that tonics and dominants are embedded close to each30

other, since they constitute the most basic musical pattern31

imaginable, as discussed in [15], and therefore often occur32

in very similar contexts.33

Hierarchical clustering works by recursively merging34

the pair of clusters 𝐶𝑖 and 𝐶𝑗 (starting from singletons)35

that are the closest to each other according to some dis-36

tance metric. We use cosine distance, commonly used37

for vector embedding spaces. The recursion stops when38

the minimum distance between clusters is above a given39

distance threshold, or when only a single cluster40

remains.41

The fact that this algorithm can work with cosine42

distance is ideal to detect similarities in a Word2Vec43

embedding space. Moreover, it is able to capture44

clusters of any shape. One might argue that a45

choice of distance threshold can be quite arbi-46

trary. However, this can be avoided by setting the47

distance threshold to some large value (thus merg-48

ing all clusters into one), and then plotting a dendrogram49

of all possible mergers. A dendrogram (e.g., Figure 3) is a50

depiction of the nested clusters produced by this method:51

it clearly shows all the mergers 𝐶𝑖 − 𝐶𝑗 that happened,52

and the distance associated to them.53

4.3 Chord prediction54

Another use of the mapping provided by Word2Vec is the55

chord prediction task. LSTMs are an improvement over the56

classic RNN design that solve its short-term memory prob-57

lem (caused by the well-known vanishing gradient prob-58

lem): this allows them to effectively track long-term de-59

pendencies in sequential data. They are commonly used in60

NLP to predict the next word in a sentence.61

We implemented an LSTM-based neural network for62

chord prediction, which trains on a training corpus (all63

sentences from a set of training composers for a given64

mode) and is tested on a test corpus (all sentences from a65

single test composer for that mode). For the LSTM exper-66

iments, the Word2Vec embedding is retrained using only67

the training corpus. Thus, we test how well-predictable68

chords in musical sequences by a composer are given the69

knowledge about chord sequences by all other composers.70

The metric used is the simple accuracy: the fraction of71

correctly-predicted chord occurrences, either overall or72

grouped by chord. We use the overall accuracy results for73

a single test composer to see how “predictable” they are,74

from what we learned from the training composers. We75

use the same results, split by chord, to investigate which76

chords are easier to predict and which are used more id-77

iomatically (and are thus more difficult to predict).78

The LSTM design is shown in Figure 2, and is structured79

as follows. Given a target chord (𝑐𝑛 in the figure), a first80

LSTM layer takes as input the concatenation of the embed-81

ded vectors of chords within some window of the target82

chord (shown as black circles in the figure with a window83

size of 2). A linear layer then maps the LSTM’s output84

vector to a vector of length n vocab (where n vocab is85

the number of distinct chords), with a final softmax activa-86



Figure 2. Diagram for the predictor network.

tion.1

For the chord prediction experiments, we use the same2

Word2Vec parameters as above, although the embeddings3

are recalculated for each test composer. For both training4

and testing the LSTM, we take care to remove any data5

points which contain any chord (either as input or as the6

target) that falls below Word2Vec’s min count (in the7

training corpus). For training the LSTM, we use the Adam8

optimizer [19] with mean squared error (MSE) for the loss.9

We train all results for 2 epochs (this was enough for them10

to converge in all cases).11

5. RESULTS12

Our results imply two main findings: 1) clustering chords13

in the embedding space reveals meaningful functional rela-14

tions between many of them; 2) chord prediction accuracy15

exhibits historical trends.16

5.1 Clustering reveals functional chord relations17

First, we report the results we obtained by applying hierar-18

chical clustering on the embedded chords from the major19

and minor sections of all composers in the corpus. We vi-20

sualize the hierarchical clustering in the embedding spaces21

for the major and the minor mode in dendrograms in Fig-22

ures 3 and 4, respectively. As mentioned before, distances23

in embedding spaces are inherently difficult to interpret in24

general. However, many of the resulting clusters are quite25

well interpretable in various ways.26

The resulting clusters for chord sequences for both modes27

reveal two fundamental tonal relations: functional equiva-28

lence and functional difference [20–22]. This extends ear-29

lier similar findings on functional categories restricted to J.30

S. Bach’s chorales and based on chord bigrams [23]. Be-31

low we list a number of notable functional chord relations32

that can be found in our clusterings.33

5.1.1 Functional equivalence34

Chords that share common tones may be regarded as func-35

tionally equivalent. Functionally equivalent chords include36

relative and parallel chords, as well as other common-tone37

relations [24]. Two chords are each other’s relative if they38

are the tonics of two keys that have the same key signature39

(e.g. V:MAJ and III:MIN in a major key). A major and40

minor chord are parallel if they have the same root (e.g.41

II:MAJ and II:MIN). Chords may also retain the same42

function, if they share a number of tones (e.g. V:MAJ and43

Figure 3. Dendrogram for chord embeddings in major.

Figure 4. Dendrogram for chord embeddings in minor.



#VII:DIM jointly form a dominant seventh chord in any1

minor key).2

In the major mode (Figure 3), the relative chords3

that are clustered together are II:MIN and IV:MAJ4

as well as IV:MIN and bVI:MAJ. The parallel chords5

are VII:MAJ and VII:MIN, and the chords in-6

volved in other common-tone relations are V:MAJ7

and VII:DIM; II:MAJ and #IV:DIM; II:DIM8

and IV:MIN; III:MAJ and #V:DIM; VI:MIN and9

#IV:DIM as well as III:DIM and #I:DIM.10

In minor (Figure 4), the relative chords close to11

one another in the embedding space are VII:MIN12

and bII:MAJ; IV:MAJ and II:MIN; as well as13

IV:MIN and VI:MAJ. The parallel chords in mi-14

nor are #VI:MAJ and #VI:MIN; and, finally, the15

chords with other common-tone relations are II:DIM16

and #VII:DIM; I:DIM and III:MIN; V:DIM and17

VII:MIN; #III:MIN and #I:DIM; as well as18

#IV:MAJ and ##IV:DIM.19

Overall, in our chord embeddings, the relative and20

common-tone relations are much more frequent than par-21

allel relations, which is to be expected, since the latter in-22

volves a change of mode and the sections from which the23

chords are drawn are precisely defined as staying within24

one mode (major or minor, notwithstanding potential sin-25

gular exceptions).26

5.1.2 Functional difference27

Chords are functionally different if they, or their equiva-28

lents, are separated by a perfect fifth, as for example in29

tonic-dominant or tonic-subdominant pairs, e.g. in authen-30

tic or plagal progressions. Note, however, that pairs of31

chords in the embedding space are undirected. In the ma-32

jor mode (Figure 3), we find fifth-based relations between33

chords in the embedding space for I:MAJ and V:MAJ;34

I:AUG and V:AUG; III:MAJ and #II:DIM; 1 as well35

as #IV:MAJ and #I:MAJ. In the minor mode (Fig-36

ure 4), we find I:MIN and V:MAJ; II:MAJ and V:MIN;37

#VI:MAJ/MIN and #III:MIN; I:MAJ and IV:MIN;38

as well as III:MAJ and VII:MAJ39

It is notable that the main cadential chords in both modes40

(i.e. triads on scale degrees I, V, IV, II, and VII in major,41

and I, V, and II in minor) occur in relatively close proxim-42

ity. Despite the fact that distances in embedding spaces are43

generally hard to interpret, we take the ubiquity of relative,44

parallel, subset, and fifths-based relations to be an indica-45

tor for their pervasiveness in the harmonic progressions in46

our corpus.47

5.2 Chord prediction indicates historical differences48

in harmonic styles49

Here, we summarise the results obtained in chord predic-50

tion. Since a composer’s prediction accuracy may change51

for each run of our algorithm due to random initialization52

of the Word2Vec and LSTM models, we run each exper-53

iment ten times, and report mean and standard deviation54

values for each composer. These are plotted in Figure 5,55

per composer and mode, where each point represents the56

1 We interpret #II:DIM as a shortened VII:DOM7.

mean accuracy for all chords combined, and the shaded57

bands show the standard deviation across the ten runs. The58

composers are ordered by their year of death in order to59

investigate historical trends.60

The first thing to notice is that the standard deviations are61

all quite small (< 0.04 in all cases), showing that our re-62

sults are consistent across runs and are not affected by ran-63

dom noise in the modeling process. Furthermore, the ap-64

proximately “inverted U-shape” of the mean values implies65

that Classical composers are the most predictable from our66

data, followed by Baroque and Romantic composers, with67

Modernist and Renaissance composers being the least pre-68

dictable. This is not to say that Classical composers are69

more predictable in general than composers from other70

eras. Indeed, remembering that for each composer we71

train on the data from all other composers in the corpus,72

this trend is roughly implied by the distribution of data73

shown in Figure 1. However, the very fact that such an74

effect exists suggests that composers of the different eras75

do use chords in fundamentally different ways. Since each76

model is trained on a very similar set of data (differing by77

only one composer), the learned model is necessarily sim-78

ilar across composers. Therefore, if two composers used79

chords similarly, their results would likewise be extremely80

similar. So, the fact that we see a historical trend at all81

suggests that composers of the different eras do indeed use82

chords in fundamentally different ways (although we make83

no claim here about what those differences are).84

Furthermore, since the majority of our data comes from85

Classical composers, we can hypothesize that the mean ac-86

curacy of a composer should be positively correlated with87

the similarity of that composer’s chord usage to that of88

an average Classical composer. From this perspective, the89

overall shape of the curve makes a lot of sense.90

An analysis of the detailed per-chord accuracy results91

(data available with the code), gives even more insight92

about the idioms common to a specific composer or period.93

The strongest result, in a major context, is the very low94

prediction accuracy for I:MAJ and V:MAJ (the easiest95

chords to predict overall) when testing on Ravel and De-96

bussy. Indeed, they are two Impressionist composers, who97

are generally known for their “distinct” harmonies, which98

rarely (if ever) use authentic cadences. Moreover, we find99

IV:MAJ and II:MIN to be two “polarising” chords: for100

most composers, we either predict them very well or very101

poorly compared to the average. In particular, IV:MAJ is102

only well predictable for Baroque composers, while others103

(with the exception of Beethoven, Chopin, and Dvořak)104

seem to use it in a more peculiar way. II:MIN, on the105

other hand, only becomes hard to predict from the late Ro-106

mantic period. This latter result, albeit neat and striking,107

is not as easily interpretable as the previous one. In mi-108

nor sections, a low accuracy on I:MIN (the most com-109

mon chord together with V:MAJ) for Renaissance com-110

posers (Gesualdo, Sweelinck, Monteverdi, Schütz) and for111

Modernists, again signals that this chord has played diverse112

roles across the centuries. We achieve a relatively low ac-113

curacy on many of the most common minor chords for both114

Romantic and Modernist composers, with the exception115



Figure 5. Global chord prediction accuracy for each composer, for major and minor sections. Standard deviation is given
by the shaded region around each point. Composers are ordered chronologically by year of death.

of Tchaikovsky. This indicates that he is closer to Clas-1

sical composers in his works in minor contexts (indeed,2

his only work in the dataset are the Seasons, a collection of3

rather traditional piano pieces overall). Changes in chord4

predictability related to stylistic differences are supported5

by historical studies focusing on the pitch-class content of6

musical pieces [25, 26].7

6. CONCLUSIONS AND FUTURE WORK8

In this paper, we investigated progressions of chords9

in both the major and minor mode by a number of10

different composers. Our study explored two applica-11

tions of deep learning methods to music theory: which12

inferences about tonal relations between chords could13

be drawn from embedding them in a lower-dimensional14

space, and whether attempting to predict chords based on15

the regularities in the data would reveal stylistic differ-16

ences between composers across historical periods. All17

data and code are available at https://github.com/18

DCMLab/chordembeddings-smc2021.19

Word2Vec was our first processing step, which provided20

useful grounds to base our subsequent analyses on. When21

applied to the output vectors of Word2Vec, clustering22

could capture some well-known tonal relationships be-23

tween chords, including relative, parallel, and subset rela-24

tions, as well as (possibly transposed) tonic-dominant pairs25

of chords. On the other hand, LSTM-based chord predic-26

tion yielded fairly high accuracy results in general (roughly27

50% for most composers), but it also allowed us to use28

their high variability across chords and composers to draw29

some conclusions about chord usage across time which30

are supported by music theory. Globally, we found that31

Classical and Baroque composers use chords in a similar32

way, while Modernists and Renaissance composers seem33

to have a more distinctive style. The Romantic style seems34

to be complex, as there is a high variance in how com-35

posers from that era use chords.36

Future work might also include a more refined use of37

clustering, for instance by applying it to a Word2Vec38

model trained only on a single composer—or on a group39

of composers which are known to be relatively similar to40

each other—in order to detect some special tonal relation-41

ship unique to that set of composers. Alternatively, chord42

prediction could be employed to investigate how rigidly a43

given composer belongs to a given artistic era: by restrict-44

ing the training corpus to composers in the same era, we45

would prevent the model from learning totally unrelated46

idioms, thus achieving a higher accuracy on the test com-47

poser (to an extent depending on how similar he actually is48

to the others in that era).49

As mentioned, in the current work, we identified the exis-50

tence of historical differences in chord usage. However, we51

did not identify what those differences were. Future work52

could look at the problem from a more causal perspective53

by limiting the training corpus for each composer to only54

those composers who preceded them.55
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[20] Z. Gárdonyi and H. Nordhoff, Harmonik.88
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